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Abstract

This report presents a method for imposing boundary conditions in the context of hyperbolic systems of
conservation laws in the finite volume framework. This method is particularly well suited for approximations
in the framework of Finite Volume Methods in the sense that it computes directly the normal flux at the bound-
ary with using just the hyperbolic nature of the system and nothing else. We discuss both linear and non linear
problems. In the first group, we consider the wave equation, the Maxwell system and the linear elasticity
problem. In the second group, we firstly study conservative systems as the magneto-hydrodynamic system, the
Euler equations together with its classical reduced versions : isentropic, isothermal and shallow-water approx-
imations and finally we consider complex (non conservative) models arising in the numerical computation of
two fluid models. These latter systems initially motivated our approach.

For each application, we analyze the hyperbolicity and write the eigensystem, then we present the so-called
VFFC finite volume approach and provide at the discrete level a general theory for the boundary condition
treatment. We analytically and numerically compare our treatment with the incomplete Riemann invariant
technique. Finally we address practical issues and we present some numerical results. A last section is devoted
to the widely studied one dimensional Euler equations for inviscid flow.
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Notations
• �

: Identity matrix

• δ : Kronecker symbol

• ∧ : Cross product

• ⊗ : Tensor product : (a⊗ b)ij = aibj

• ∆ : Laplacian operator

• F (v) · ω : Normal flux : F (v) · ω =
∑nd
j=1 ωiF

i(v)
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1 Introduction
A lot of physical models occurring in continuous mechanics appear to be systems of conservations laws. These
equations express in general fundamental laws of physics, namely the conservation of mass, charge, momen-
tum, total energy, etc. When dealing with multidimensional models, essentially the only way of obtaining
quantitative results is to use numerical simulation. That is working with a discrete approximation of the system
of equations. If one insists on the fact that the conservation laws must be rigorously fulfilled (and according
to physical considerations this is often a minimal requirement) one is naturally led to use the so-called finite
volume approach. In this paper our aim is to discuss with great details the matter of imposing at the discrete
level boundary conditions on the boundary of the computational domain. We shall however always deal first
at the continuous level the boundary conditions and then study their discrete version. Note that these bound-
aries could be either physical (wall, inlet or outlet, etc) or numerical (sometimes called artificial) when e.g. the
physical domain is infinite. Let us mention that the applications we have in mind are those steaming from Fluid
Mechanics, although other fields will also be considered (see Section 5).

The modern theory of partial differential equations relies on Distribution theory and boundary conditions prob-
lems have been first studied in this context. A reference in this direction is the famous treatise written in the late
sixties by J.L. Lions and E. Magenes [38], [39]. The objective of their program was to study in a systematic
way the boundary values problems associated with linear partial differential equations. In the same spirit, the
book of H.O. Kreiss [36] should be quoted.

Let us deal more particularly with hyperbolic type equations. For these equations, wave propagation phenom-
ena are determinant and we refer to Whitham [60] in which a deep exposition is provided. Concerning the
discrete problem associated with these equations, roughly speaking there are two caricatured situations. In the
first one, one deals with linear and quiet general (wave) equations while in the second one, one deals with
nonlinear particular ones. For linear (wave) equations like e.g. the wave equation in 1, 2 or 3 space dimension,
Maxwell’s equations, Elasticity equations, a lot of works rely on the theoretic and explicit solution to the con-
tinuous equations and this leads in general to a non local boundary condition. Then usually, an approximation
procedure, e.g. an asymptotic expansion with respect to a small parameter, is applied in order to derive local
boundary conditions. Next these conditions are discretized by classical difference techniques. This has led to
a very wide body of knowledge and we refer to the review article by Tsynkov [55] for numerous results and
references. On the opposite, concerning nonlinear equations, most of the works are devoted to particular equa-
tions and since no explicit solutions are available, most of the works rely on ad hoc procedures usually related
to physical considerations.

In this report our aim is to provide a general theory for the boundary condition problem at the discrete level
for multidimensional hyperbolic systems in the finite volume framework. Our work transfers in a certain sense
knowledge in the linear case to the non linear one and gives a systematic approach that can be used in either
cases (linear and non linear). Moreover, and in contrast with most of the works on the subject, we do not
rely on either specific or computationally expansive functions like e.g. Riemann solvers or Riemann invariants.
Actually we just use the hyperbolic nature of the system and nothing else. Last but not least, we address directly
the key problem which consists in determining directly the normal flux on the boundary while other methods
rely on the finding of a state on this boundary (a problem that can be ill-posed). As a result of our method, we
are able to take into account any physically reasonable boundary condition and Theorem 1 gives a sufficient
condition under which the problem of finding the normal flux is well-posed. Moreover this condition is natural
and straightforward to check in each example. Although no general result is obtained in the non linear case1, we
are able to treat the case of characteristic boundaries in the context of a wall in fluid mechanics, see Section 6.1.
In contrast with methods which require the determination of a state on the boundary, we do not impose artificial
conditions since in this case the problem is under determined. Indeed dealing directly with the normal flux
leads us to a system with the same number of equations and unknowns, see Section 3.2.3. We shall compare
our method with classical ones both from the point of view of computational cost and precision.

1Recall that already at the continuous level, this is a well known open problem

5



On boundary conditions in the FV framework Report CMLA, Ens de Cachan, 2003

2 Setting of the problem in the multidimensional conservative
case
Let us consider a system of m conservation equations defined on a nd-dimensional domain Ω (with nd = 1, 2
or 3 in practice) :

∂v

∂t
+∇ · F (v) = 0 in Ω× R+ , v = (v1, . . . , vm) ∈ Rm . (2.1)

Here F j maps G into Rm where G is an open subset of Rm corresponding to the physically admissible states
and

∇ · F (v) =
nd∑

j=1

∂F j(v)

∂xj
.

2.1 Examples of multidimensional conservative problems
Let us give some typical examples (of practical importance) of such systems.

2.1.1 Example 1 : the wave equation

The first one is the multidimensional wave equation that reads :

∂2u

∂t2
− c24u = 0 , (2.2)

where c is a given positive real number. Setting v = (v0, . . . , vnd), m = nd + 1, F j0 (v) = cvj for j =
1, . . . , nd and F jp (v) = cδj,pv0 for j, p = 1, . . . , nd, one sees immediately that system (2.1) implies that
u ≡ v0 satisfies (2.2). Hence the system reads here as

∂u

∂t
+ c

nd∑

`=1

∂v`
∂x`

= 0 , (2.3)

∂vj
∂t

+ c
∂u

∂xj
= 0, j = 1, . . . , nd . (2.4)

Observe that
nd∑

i=1

ωiF
i(v) = c(v] · ω, uω), ∀ω ∈ Rnd , (2.5)

where we have split v ≡ (u, v]) with v] = (v1, . . . , vnd).

2.1.2 Example 2 : the Maxwell system

This example is Maxwell’s system of equations that reads for nd = 2 or nd = 3 :

∂D

∂t
− curlH = 0 , (2.6)

∂B

∂t
+ curlE = 0 , (2.7)

with constitutive equations D = εE and B = µH . The vectors D and B live in Rnd and are divergence free
vector fields. For simplicity, ε and µ are taken as positive constants. Here we take v = (D,B), m = 2nd and
set

nd∑

i=1

ωiF
i(v) = (−ω

µ
∧B, ω

ε
∧D), ∀ω ∈ Rnd , (2.8)

so that (2.6)-(2.7) is again of the form (2.1).
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2.1.3 Example 3 : the linear elasticity problem

The third example is the time dependent linear elasticity problem for nd = 2 or nd = 3 where motion of
the solid is described by the displacement vector u = (u1, · · · , und) as a function of time t and of position
x = (x1, · · · , xnd). Let us remark that the case nd = 1 corresponds to the wave equation (2.2). The equations
of motion have the form (see for instance Marsden and Hughes [40] and John [35]) :

∂2ui
∂t2

=
λ+ µ

ρ

nd∑

k=1

∂2uk
∂xi∂xk

+
µ

ρ

nd∑

k=1

∂2ui
∂x2

k

, i = 1, · · · , nd , (2.9)

with Lamé constants λ, µ and density constant ρ.
Let denote v0 = (v1

0 , · · · , vnd0 ) ∈ Rnd and vj = (v1
j , · · · , vndj ) ∈ Rnd for j = 1, · · · , nd. Setting v =

(v0, v1, · · · , vnd), this system is of the form (2.1) with v0 ≡ u and m = nd(nd+ 1) as




∂vi0
∂t

=
λ

ρ

nd∑

k=1

∂vkk
∂xi

+
µ

ρ

nd∑

k=1

(
∂vik
∂xk

+
∂vki
∂xk

), i = 1, · · · , nd ,

∂vij
∂t

=
∂vi0
∂xj

, i, j = 1, · · · , nd ,
(2.10)

where F i mapping G into Rnd satisfy

nd∑

i=1

ωiF
i(v) = (σ(v])ω, ω ⊗ v0) (2.11)

where we have split v ≡ (u, v]) with v] = (v1, . . . , vnd) and where σ(v]) is the matrix

σ(v]) =
µ

ρ
ε(v]) +

λ

ρ
tr(v])

�

with ε(v]) = 1
2
(tv] + v]).

2.1.4 Example 4 : the magneto-hydrodynamic system

The fourth application concerns a model of ideal magneto-hydrodynamics. The system satisfied by magnetics
fluids reads in conservative form as

∂ρ

∂t
+∇ · (ρu) = 0, (2.12)

∂(ρu)

∂t
+∇ · (ρu⊗ u+ P ) = 0, (2.13)

∂(ρE)

∂t
+∇ · (ρEu+ Pu) = 0, (2.14)

∂B

∂t
+∇ · (u⊗B −B ⊗ u) = 0 , (2.15)

where the scalar ρ is the density, the vector u in Rnd represents the velocity, the divergence free vector field B
(i.e. ∇ ·B = 0) is the magnetic field, the scalar E = e+ 1

2
|u|2 + 1

2ρ
|B|2 is the total energy and the matrix P

satisfies P = (p + 1
2
|B|2)

� − B ⊗ B. In order to close this system, one should provide an equation of state
(EOS) linking the pressure p, the internal energy e and the density ρ. Let us emphasize that this system is of the
form (2.1) with v ∈ R2nd+2, v = (ρ, ρu1, . . . , ρund, ρE,B1, . . . , Bnd), m = 2nd+ 2 and for all ω in Rnd

nd∑

i=1

ωiF
i(v) = u · ω(ρ, ρu, ρE,−B) + (p+

1

2
|B|2)(0, ω, u · ω, 0)−B · ω(0, B,B · u,−u) . (2.16)

2.1.5 Example 5 : the Euler equations

The third one is the multidimensional Euler equations for compressible inviscid fluids that reads :

∂ρ

∂t
+∇ · (ρu) = 0, (2.17)

∂(ρu)

∂t
+∇ · (ρu⊗ u+ p

�
) = 0, (2.18)

∂(ρE)

∂t
+∇ · (ρEu+ pu) = 0, (2.19)
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where E = e + 1
2
|u|2 is the total energy and u is a vector in Rnd. In order to close this system, one should

provide an equation of state (EOS) linking the pressure p, the internal energy e and the density ρ. Let us
emphasize that this system reduces to the 3 first equations (2.12)-(2.14) of the magneto-hydrodynamic system
where the matrix P is spherical: P = p

�
, with p denoting the thermodynamical pressure.

This system is of the form (2.1) with v ∈ Rnd+2, v = (ρ, ρu1, · · · , ρund, ρE), m = nd+ 2 and

nd∑

i=1

ωiF
i(v) = (u · ω)v + p(0, ω, u · ω), ∀ω ∈ Rnd . (2.20)

2.1.6 Example 6 : the isentropic compressible Euler system

Introducing the specific entropy function s and the temperature T that satisfy Tds = de− p
ρ2 dρ, it is classical

to derive for continuous solutions of (2.17)-(2.18) the fact that the specific entropy is convected by the flow:

∂s

∂t
+ u · ∇s = 0 .

Since s = constant is an obvious solution to this equation, in certain physical cases, it might be relevant to
address the reduced system, known as the isentropic compressible Euler system of equations, which consists
in the two conservation laws (2.17) and (2.18). This time the EOS is a relation between the pressure and the
density: p = p(ρ). This system is of the form (2.1) with v ∈ Rnd+1, v = (ρ, ρu1, . . . , ρund), m = nd + 1
and

F (v) · ω = u · ω(ρ, ρu) + p(0, ω), ∀ω ∈ Rnd . (2.21)

The function p = p(ρ) is arbitrary and depends on the fluid which is considered. The only constraint is that
the derivative of p with respect to ρ is non negative which corresponds to the physical property that pressure

perturbations propagate at finite speed: the speed of sound, c =
√

dp
dρ

. There are two asymptotic cases which

are sometimes considered and yield the two following applications.

2.1.7 Example 7 : the isothermal flow

Here the relation between pressure and temperature is linear which physically corresponds to the limit case
where the two heat capacities Cv and Cp are equal. In such a case a change in the temperature requires an
infinite amount of energy, that is an impossible fact. Hence the temperature cannot vary. Since now the speed
of sound is constant, the system (2.17)-(2.18) with the normal flux (2.21) is closed by the EOS: p = c2

0ρ.

2.1.8 Example 8 : the shallow water equations

In that case a very thin layer of fluid is considered. This fluid is in general a liquid and is therefore slightly
compressible. In the limit where the fluid is incompressible, the density is constant but the height, h, of the fluid
might depends on space and time. In this situation one arrives again to the model (2.17)-(2.18) with the normal
flux (2.21) but this time p = 1

2
ρ̄gh2 and ρ = ρ̄h where ρ̄ is the constant density of the fluid and g denotes the

gravity.
Of course there are many other examples of systems of conservation laws. We have chosen to study these typical
examples because of their physical importance and also because they belong to three different categories. The
first one is a scalar second order (with respect to time) linear equation, the second one is a first order linear
system of equations, the third one is a second order linear system while the last ones are first order non-linear
systems. We shall demonstrate in this paper, that the problem of imposing boundary conditions for these
systems of equations in finite volume setup can be handled in a systematic and effective way thanks to their
hyperbolic character (which is dealt in the forthcoming Section).

2.2 On the continuous system of equations
The dependent variable v is a function of the independent variable x and t. Given an arbitrary point v ∈ G,
the constant function v(x, t) ≡ v solves the system (2.1). Now if we linearize this system around this trivial
solution, we obtain :

∂w

∂t
+

nd∑

j=1

Aj
∂w

∂xj
= 0 , (2.22)

8
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where Aj = Aj(v) and where Aj(v) is the Jacobian matrix ∂F j(v)
∂v

. Indeed, this readily follows from the first
order Taylor expansion with respect to w ∈ Rnd :

F jp (v + w) = F jp (v) +
m∑

k=1

∂F jp (v)

∂vk
wk + h.o.t. in w .

Now, equation (2.22) can be explicitly solved thanks to the Fourier transform which actually amounts looking
for its plane wave solutions w(x, t) = ξ exp i(ω.x− λt) with ω ∈ Rnd and λ ∈ R. This leads to the following
eigenvalue problem :

nd∑

j=1

(
ωjA

j
)
ξ = λ ξ . (2.23)

By denoting the m×m matrix

Aω(v) =
nd∑

j=1

ωj
∂F j(v)

∂v
, (2.24)

we see that we are dealing with the eigenvalue problem for Aω(v). It is now natural to introduce the classical
definition of hyperbolicity for systems like (2.1).

Definition 1 The multidimensional system of conservation laws (2.1) is said to be hyperbolic if for every ω ∈
Rnd and every v ∈ G the m×m matrix Aω(v) has m linearly independent real eigenvectors.
In case of an hyperbolic system, an eigensystem of Aω(v) is composed of

• the set of the real eigenvalues : λ1(v, ω) ≤ . . . ≤ λm(v, ω),

• a set (l1(v, ω), . . . , lm(v, ω)) of left eigenvectors satisfying :

tAω(v) lk(v, ω) = λk(v, ω)lk(v, ω), for k = 1, . . . ,m,

• a set (r1(v, ω), . . . , rm(v, ω)) of right eigenvectors satisfying :

Aω(v) rk(v, ω) = λk(v, ω)rk(v, ω), for k = 1, . . . ,m.

and the following normalization : (k, p = 1, . . . ,m)

lk(v, ω) · rp(v, ω) = δk,p .

Let us discuss the hyperbolic character of the previously defined models and for a later use, let us give the
analytical expression of an eigensystem.

2.2.1 Example 1 : Eigensystem

For the the multidimensional wave equation (2.2), given ω ∈ Rnd, the matrix Aω (we omit the dependence in
v since for a linear equation the matrix Aω(v) does not depend on v) is

Aω =




0 cω1 · · · cωnd
cω1 0 0 0

...
...

...
...

cωnd 0 0 0


 . (2.25)

Since this matrix is symmetric, it has a complete set of eigenvectors and therefore (2.2) is an hyperbolic system
of conservation laws. The eigenvalues of Aω are as follows :





λ1(ω) = −c|ω| ,

λ2(ω) = · · · = λnd(ω) = 0 ,

λnd+1(ω) = c|ω| .

(2.26)

9
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The right and left eigenvectors associated to these eigenvalues can be taken equal to





r1(ω) = l1(ω) =
1√
2

(1,
−ω
|ω| ),

rnd+1(ω) = lnd+1(ω) =
1√
2

(1,
ω

|ω| ),

rj(ω) = lj(ω) = (0,Ωj) , j = 2, . . . , nd ,

(2.27)

where Ω1, · · · ,Ωnd−1 is an orthonormal basis of the hyperplane orthogonal to ω.

2.2.2 Example 2 : Eigensystem

Concerning Maxwell’s system of equations (2.6)-(2.7), the matrix Aω is compactly defined by the identity
(2.8) :

Aω(D,B) = (−ω
µ
∧B, ω

ε
∧D) . (2.28)

The eigenvalues of Aω are as follows,




λ1(ω) = · · · = λnd−1(ω) = −c|ω| ,

λnd(ω) = λnd+1(ω) = 0 ,

λnd+2(ω) = · · · = λ2nd(ω) = c|ω| ,

(2.29)

where c > 0 satisfies c2εµ = 1.
The right eigenvectors associated to these eigenvalues can be taken equal to





rj(ω) = (Ωj ,−ω ∧ Ωj
cε|ω| ), j = 1, . . . , nd− 1 ,

rnd(ω) = (ω, 0),

rnd+1(ω) = (0, ω),

rnd+j+1(ω) = (Ωj ,
ω ∧ Ωj
cε|ω| ), j = 1, . . . , nd− 1 ,

(2.30)

where Ω1, · · · ,Ωnd−1 is an orthonormal basis of the hyperplane orthogonal to ω. The dual basis of the
(rk(ω))k=1,...,nd+2 is then





lj(ω) =
1

2
(Ωj ,−ω ∧ Ωj

cµ|ω| ), j = 1, . . . , nd− 1 ,

lnd(ω) = (ω, 0),

lnd+1(ω) = (0, ω),

lnd+j+1(ω) =
1

2
(Ωj ,

ω ∧ Ωj
cµ|ω| ), j = 1, . . . , nd− 1 .

(2.31)

2.2.3 Example 3 : Eigensystem

Concerning linear elasticity system of equations (2.10), the matrix Aω is defined by :




0nd A1 · · · And
ω1

�
nd 0nd · · · 0nd

...
...

...
...

ωnd
�
nd 0nd · · · 0nd


 , (2.32)

10
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where 0nd and
�
nd are the zero and identity matrices and where matrices Ai are defined with the non-zero

column and row corresponding to column i and row i by

Ai =
µ

ρ
ω1

�
nd +

λ

ρ



· · · 0 ω1 0 · · ·

...
...

...
...

...
· · · 0 ωnd 0 · · ·


+

µ

ρ




...
...

...
0 · · · 0
ω1 · · · ωnd
0 · · · 0
...

...
...




(2.33)

The eigenvalues of Aω are equal to :




λ1(ω) = −
√
λ+ 2µ

ρ
|ω| ,

λ2(ω) = · · · = λnd(ω) = −
√
µ

ρ
|ω| ,

λnd+1(ω) = · · · = λnd2(ω) = 0 ,

λnd2+1(ω) = · · · = λnd(nd+1)−1(ω) =

√
µ

ρ
|ω| ,

λnd(nd+1)(ω) =

√
λ+ 2µ

ρ
|ω| .

(2.34)

2.2.4 Example 4 : Eigensystem

For the ideal magneto-hydrodynamics equations, the matrix Aω(v) is




0 ω 0 0
Kω − u · ωu u⊗ ω − kω ⊗ u+ u · ω �

kω (1− k)ω ⊗B −B · ω �

−2u · ω|B|2
ρ

+ (K −H)u · ω (H +
|B|2
ρ

)ω − k(u · ω)u (1 + k)u · ω (1− k)u · ωB −B · ωu
B · ωu−B · uω

ρ

B ⊗ ω −B · ω �

ρ
0 u · ω �



.

Following the process of Roe and Balsara [47], Barth [4], Powell [42], and Powell et al [43], we are able to
give a generalized form of the eigenvalues and eigenvectors of this system. For nd = 3, the real eigenvalues
are as follows :





λ1(v, ω) = u · ω − |ω|cf

λ2(v, ω) = u · ω − |ω|cs

λ3(v, ω) = u · ω − ca

λ4(v, ω) = λ5(v, ω) = u · ω

λ6(v, ω) = u · ω + ca

λ7(v, ω) = u · ω + |ω|cs

λ8(v, ω) = u · ω + |ω|cf .

(2.35)

The eigenvalues λ4 and λ5 correspond to an entropy and a magnetic-flux wave, λ3 and λ6 correspond to a pair
of Alfvén waves, λ2 and λ7 (resp. λ1 and λ8) correspond to a pair of slow (resp. fast) magneto-acoustic waves.
Here the thermodynamic temperature has been denoted by T , the specific entropy by s, the total enthalpy by
H , the speed of sound by c and then (note that according to the second principle of thermodynamics, we have

11
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(
∂p
∂s

)
ρ
> 0,

(
∂p
∂ρ

)
s
> 0)





k =
1

ρT

(
∂p

∂s

)

ρ

, c =

√(
∂p

∂ρ

)

s

, H = e+
1

2
|u|2 +

p

ρ
, K = c2 + k(|u|2 −H) ,

ca =
B · ω√
ρ

cf =

√
1

2

(
c2 +

|B|2
ρ

+
√
δ

)
, cs =

√
1

2

(
c2 +

|B|2
ρ
−
√
δ

)

with δ =

(
c2 +

|B|2
ρ

)2

− 4c2(B · ω)2

ρ|ω|2 .

(2.36)

In order to describe the eigenvectors associated to these eigenvalues, we note Ω1 the orthogonal vector to ω
such that





Ω1 ∈ Span(ω,B) ,
|Ω1| = |ω| ,
(ω,Ω1, ω ∧ Ω1) is direct .

(2.37)

and in order to take into account the limit case ω · B = 0 and w = γB, Roe and Balsara introduced the
following positive parameters that are defined by

α2
f =

c2 − c2s
c2f − c2s

, α2
s =

c2f − c2
c2f − c2s

(2.38)

and that satisfy the following relationships





α2
f + α2

s = 1

α2
fc

2
f + α2

sc
2
s = c2

(αfαs)
2 =

c2(B · Ω1)

ρ
√
δ|ω|2

α2
f =

1

2


1 +

c2 − |B|2
ρ√

δ


 , α2

s =
1

2


1−

c2 − |B|2
ρ√

δ




(2.39)

Let us recall that if R (resp. L) is an right (resp. left) eigenvector of the system written in the physical variables
(ρ, u, p,B) then the corresponding “conservative” eigenvector r (resp. l) is given by the relationship

r =
∂V

∂W
R and l =

(
∂W

∂V

)t
L (2.40)

where

∂V

∂W
=




1 0 0 0
u ρ

�
0 0

H − c2

k
ρu 1

k
0

0 0 0
�


 (2.41)

and

∂W

∂V
=




1 0 0 0
−u
ρ

1
ρ

�
0 0

k( c
2

k
−H + |u|2) −ku k −kB

0 0 0
�


 . (2.42)
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For nd = 3, the right primitive eigenvalues associated to λ3, λ4, λ5, λ6 are equal to





R3(v, ω) = (0,−ω ∧ Ω1, 0,−
√
ρω ∧ Ω1)

R4(v, ω) = (1, 0, 0, 0)

R5(v, ω) = (0, 0, 0,
ω

|ω| )

R6(v, ω) = (0,+ω ∧ Ω1, 0,−
√
ρω ∧ Ω1)

(2.43)

The primitive right eigenvectors of the magneto-acoustic waves are





R1(v, ω) = αf (ρ,−cf ω|ω| , c
2ρ, 0) + αsc

√
ρ sgn(B · Ω1)(0,

+B · ω
ρcf |ω|

Ω1

|ω| , 0,
Ω1

|ω| )

R2(v, ω) = αs(ρ,−cs ω|ω| , c
2ρ, 0)− αfc

√
ρ sgn(B · Ω1)(0,

+cf sgn(B · ω)

c
√
ρ

Ω1

|ω| , 0,
Ω1

|ω| )

R7(v, ω) = αs(ρ,+cs
ω

|ω| , c
2ρ, 0)− αfc

√
ρ sgn(B · Ω1)(0,

−cf sgn(B · ω)

c
√
ρ

Ω1

|ω| , 0,
Ω1

|ω| )

R8(v, ω) = αf (ρ,+cf
ω

|ω| , c
2ρ, 0) + αsc

√
ρ sgn(B · Ω1)(0,

−B · ω
ρcf |ω|

Ω1

|ω| , 0,
Ω1

|ω| )

So as to minimize the rounding error and to treat the triple umbilic point, we rewrite cs as

cs =
c

|ω|cf

√
(B · ω)2

ρ
, (2.44)

and we propose to compute αf and αs in the following way : if c2 − |B|2
ρ

then αf = αs = 1√
2

else first
compute

φ =
1

2
arctan

(
2c|B · Ω1|

|ω|√ρ(c2 − |B|2
ρ

)

)
(2.45)

then if φ ≥ 0 then αf = cos(φ) and αs = sin(φ) else if φ ≤ 0 then αf = − sin(φ) and αs = cos(φ).
The left primitive eigenvectors are given by




L1(v, ω) =
1

2α2
fc

2
f

(
αf (0,−cf ω|ω| ,

1

ρ
, 0) + αsc sgn(B · Ω1)(0,

+B · ω
ρcf |ω|

Ω1

|ω| , 0,
Ω1

|ω| )
)

L2(v, ω) =
1

2c2

(
αs(0,−cs ω|ω| ,

1

ρ
, 0)− αfc sgn(B · Ω1)√

ρ
(0,

+cf
√
ρ sgn(B · ω)

c

Ω1

|ω| , 0,
Ω1

|ω| )
)

L3(v, ω) =
1

2|ω|4 (0,−ω ∧ Ω1, 0,− 1√
ρ
ω ∧ Ω1)

L4(v, ω) = (1, 0, 0,− 1

c2
)

L5(v, ω) = (0, 0, 0,
ω

|ω| )

L6(v, ω) =
1

2|ω|4 (0,+ω ∧ Ω1, 0,− 1√
ρ
ω ∧ Ω1)

R7(v, ω) =
1

2c2

(
αs(0,+cs

ω

|ω| ,
1

ρ
, 0)− αfc sgn(B · Ω1)√

ρ
(0,
−cf√ρ sgn(B · ω)

c

Ω1

|ω| , 0,
Ω1

|ω| )
)

R8(v, ω) =
1

2α2
fc

2
f

(
αf (0,+cf

ω

|ω| ,
1

ρ
, 0) + αsc sgn(B · Ω1)(0,

−B · ω
ρcf |ω|

Ω1

|ω| , 0,
Ω1

|ω| )
)

(2.46)
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For nd = 2, the real real eigenvalues are defined by :




λ1(v, ω) = u · ω − |ω|cf

λ2(v, ω) = u · ω − |ω|cs

λ3(v, ω) = λ4(v, ω) = u · ω

λ5(v, ω) = u · ω + |ω|cs

λ6(v, ω) = u · ω + |ω|cf .

(2.47)

and the eigenvectors correspond to the nd = 3 eigenvectors.
Hence the multidimensional magneto-hydrodynamics system is an hyperbolic system of conservation laws.

2.2.5 Example 5 : Eigensystem

For the multidimensional Euler equations (2.17)-(2.19), the matrix Aω(v) is found to be equal to :

Aω(v) =




0 ω 0
Kω − u · ωu u⊗ ω − kω ⊗ u+ u · ω �

kω
(K −H)u · ω Hω − k(u · ω)u (1 + k)u · ω


 (2.48)

where the thermodynamic temperature has been denoted by T , the specific entropy by s, the total enthalpy by
H , the speed of sound by c and then (note that according to the second principle of thermodynamics, we have(
∂p
∂s

)
ρ
> 0,

(
∂p
∂ρ

)
s
> 0)

k =
1

ρT

(
∂p

∂s

)

ρ

, c =

√(
∂p

∂ρ

)

s

, H = e+
1

2
|u|2 +

p

ρ
, K = c2 + k(|u|2 −H) . (2.49)

The eigenvalues of Aω(v) are as follows,




λ1(v, ω) = u · ω − |ω|c ,

λ2(v, ω) = · · · = λnd+1(v, ω) = u · ω ,

λnd+2(v, ω) = u · ω + |ω|c .

(2.50)

The right eigenvectors associated to these eigenvalues can be taken equal to




r1(v, ω) = (1, u− c ω|ω| , H − u ·
ω

|ω| c) ,

rnd+2(v, ω) = (1, u+ c
ω

|ω| , H + u · ω|ω| c),

r2(v, ω) = (1, u,H − c2

k
) ,

r3(v, ω) = (0,Ω1, u · Ω1), . . . , rnd+1(v, ω) = (0,Ωnd−1, u · Ωnd−1) ,

(2.51)

where Ω1, · · · ,Ωnd−1 is an orthonormal basis of the hyperplane orthogonal to ω. The dual basis of the
(rk(v, ω))k=1,...,nd+2 is then





l1(v, ω) =
1

2c2

(
K +

u · ω
|ω| c,−ku−

ω

|ω| c, k
)
,

lnd+2(v, ω) =
1

2c2

(
K − u · ω

|ω| c,−ku+
ω

|ω| c, k
)
,

l2(v, ω) =
k

c2
(H − |u|2, u,−1) ,

l3(v, ω) = (−u · Ω1,Ω1, 0), . . . , lnd+1(v, ω) = (−u · Ωnd−1,Ωnd−1, 0) .

(2.52)

Hence the multidimensional Euler equations is an hyperbolic system of conservation laws.
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2.2.6 Example 6, 7, 8 : Eigensystem

For the isentropic multidimensional Euler equations, the matrix Aω(v) is

Aω(v) =

(
0 ω

c2ω − u · ωu u⊗ ω + u · ω �

)
. (2.53)

where the speed of sound is defined by c =
√

dp
dρ

. The eigenvalues are as follows





λ1(v, ω) = u · ω − |ω|c ,

λ2(v, ω) = · · · = λnd(v, ω) = u · ω ,

λnd+1(v, ω) = u · ω + |ω|c .

(2.54)

The right eigenvectors associated to these eigenvalues can be taken equal to





r1(v, ω) = (1, u− c ω|ω| ) ,

rnd+1(v, ω) = (1, u+ c
ω

|ω| )

r2(v, ω) = (0,Ω1), . . . , rnd(v, ω) = (0,Ωnd−1),

(2.55)

where Ω1, . . . ,Ωnd−1 is an orthonormal basis of the hyperplane orthogonal to ω. The dual basis of the
(rk(v, ω))k=1,...,nd+1 is then





l1(v, ω) =
1

2c
(c+

u · ω
|ω| ,−

ω

|ω| ) ,

lnd+1(v, ω) =
1

2c
(c− u · ω

|ω| c,
ω

|ω| ) ,

l2(v, ω) = (−u · Ω1,Ω1), . . . , lnd(v, ω) = (−u · Ωnd−1,Ωnd−1) .

(2.56)

Concerning Application 7 one has simply to take into the previous formulas c ≡ c0 while for Application 8 one
takes c ≡ √gh.

2.2.7 Remark on the well posed character of the system

If we consider an hyperbolic system, for the linearized system (2.22) it is then straightforward to show using the
Fourier transform that the initial value problem in the whole space is well posed in various functional spaces.
Then by fixed point techniques, one can extend these results to the nonlinear system (2.1). We refer e.g. to the
recent books by D. Serre [50] and C. Dafermos [11] for that purpose. However when one is interested in the
mixed initial and boundary value problem, the situation is much more involved. In the linear case, much can be
done while in the non-linear one very little is known.
Let us briefly give a flavor of the problem by considering the very simple example of the linear transport
equation. Given c ∈ R∗, the one dimensional linear transport equation (called the advection equation) reads :

∂u

∂t
+ c

∂u

∂x
= 0 . (2.57)

Here hyperbolicity is automatic and if this equation is posed on a bounded interval, say ]a, b[, one can prescribe
only one of the two boundary values u(a, t) or u(b, t) depending on the sign of c. More precisely, one can only
give the information that enters into the domain ]a, b[ : if c > 0 one can give u(a, t), while if c < 0 one can
give u(b, t).
In the nonlinear case, the situation is more involved even in the one dimensional case since the ”speed” c will
depend on the solution.
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2.3 The discrete system of equations
The computational domain Ω is taken to be a polygonal domain and it is decomposed in small volumes K (the
so-called control volumes) such that Ω = ∪K∈TK. We assume that the control volumes K are polyhedra such
that the interior boundary is the union of hypersurfaces K ∩ L where L belongs to the set N (K) = {L ∈
T /L 6= K and K ∩ L has positive (nd− 1)-measure}2.

2.3.1 The finite volume approach

In order to approximate the average of the solution on the control volume K which reads (vol(K) denotes the
nd-dimensional volume of K) :

vK(t) ≡ 1

vol(K)

∫

K

v(x, t) dx , (2.58)

system (2.1) is integrated on K and leads to the following equations :

vol(K)
dvK
dt

+ F ν∂K = 0 . (2.59)

Hence the time evolution of vK(t) is governed by the normal flux on the boundary of K :

F ν∂K(t) =

∫

∂K

F (v(σ, t)) · ν(σ) dσ, (2.60)

where ∂K is the boundary of K, ν(σ) the unit external normal on ∂K and dσ denotes the (nd − 1)-volume
element on this hypersurface.
The heart of the matter in finite volume methods consists in providing a formula for the normal fluxes F ν∂K in
terms of the {vL}L∈T . We decompose the normal flux (2.60) into a sum :

F ν∂K =
∑

L∈N (K)

FK,L , (2.61)

where the unit normal on K ∩ L denoted by νK,L points into L and where :

FK,L =

∫

K∩L
F (v(σ, t)) · νK,L dσ . (2.62)

Since our goal is to approximate (2.59) by an ordinary differential equation for the vK(t)’s, we have to express
the normal flux (2.62) in terms of the {vM}M∈T . In general, (2.59) is strongly dominated by finite speed
nonlinear wave propagation phenomena and therefore we are led to consider a formula which uses a finite
stencil. For practical reasons, including CPU and storage costs, it turns out that using the two neighboring
values vK and vL is enough at least for first order approximations. This means that we are going to look for a
formula that reads as :

FK,L ≈ area(K ∩ L) Φ(vK , vL;K,L) , (2.63)

where Φ is the numerical flux to be constructed and area(K ∩L) stands for the (nd− 1)-dimensional volume
of the hypersurface K ∩ L.

At this level of generality the numerical flux has to satisfy two properties :

(i) consistency : Φ(w,w;K,L) = F (w) · νK,L,

(ii) conservation : Φ(v, w;K,L) = −Φ(w, v;L,K).

We refer to Section 2.3.2 concerning formulas that will be used in the numerical computations. But once a
formula has been chosen, the semi discretization of (2.1) is a system of o.d.e.’s that reads :

vol(K)
dvK
dt

+
∑

L∈N (K)

area(K ∩ L)Φ(vK , vL;K,L) = 0 . (2.64)

2At this stage, we intentionally ignore control volumes K which meet the boundary of Ω since it is the matter of Section 3 to deal with
this question.
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2.3.2 Numerical fluxes

Here we have to provide a formula for the numerical flux Φ(vK , vL;K,L) at the interface between two control
volumes K and L. Since this vector is an approximation to the normal flux (2.62), a natural choice would be
e.g.

Φ(vK , vL;K,L) =
F (vK) + F (vL)

2
· νK,L , (2.65)

but as it is well known and understood, this leads to unstable schemes. Actually this flux has to take into
account the direction of propagation of information between the two volumes during the time step. This is the
basis for the upwind schemes and we can cite among them Godunov scheme, Roe scheme (see Godlewski and
Raviart [28] and reference therein) and the VFFC scheme from Ghidaglia et al [26] and [27]. The last two
schemes belong to the family of flux schemes according to the following definition (Ghidaglia [25]).

Definition 2 The numerical flux Φ(v, w;K,L) corresponds to a flux scheme when there exists a matrixU(v, w;K,L)
such that

Φ(v, w;K,L) =
F (v) + F (w)

2
· νK,L − U(v, w;K,L)

F (w)− F (v)

2
· νK,L . (2.66)

In all the numerical computations, we shall use the VFFC scheme (Ghidaglia et al [26]) which corresponds to
the following formula.

Definition 3 The numerical flux of the ”VFFC” method is obtained by formula (2.66) when we take :

U(v, w;K,L) = sgn
(
AνK,L(µ(v, w;K,L))

)
, (2.67)

where µ(v, w;K,L) is a mean between vK and vL which only depends on the geometry of K and L, e.g. :

µ(v, w;K,L) =
vol(K)v + vol(L)w

vol(K) + vol(L)
. (2.68)

Remark 1 When a matrix M has a complete set of eigenvectors, sgn(M) is the matrix which has the same
eigenvectors as M but whose eigenvalues are the sign (∈ {−1, 0,+1}) of those of M .

2.3.3 Time discretization

Although the system (2.1) has also a conservative structure with respect to time t, since this variable is one
dimensional, it is more standard to use finite difference schemes for its time discretization.
When the explicit first order backward Euler’s scheme is used for the total discretization of (2.64), one gets :

vn+1
K = vnK −

∆tn
vol(K)

∑

L∈N (K)

area(K ∩ L)Φ(vnK , v
n
L;K,L) . (2.69)

Of course this scheme is stable under a stringent C.F.L. condition, which is not the case for the implicit first
order forward Euler’s scheme :

vn+1
K = vnK −

∆tn
vol(K)

∑

L∈N (K)

area(K ∩ L)Φ(vn+1
K , vn+1

L ;K,L) . (2.70)

Both schemes are first order consistent, as it is the case for the space discretization.

3 Discretization of the boundary conditions
Let K be a control volume which meets the boundary ∂Ω. Of course formula (2.64) is no longer valid. Indeed
when K meets the boundary of Ω on the face K ∩ Ω, we have to find the numerical flux Φ(vK ,K, ∂Ω) that
approximates the integral

FK,∂Ω =

∫

K∩∂Ω

F (v(σ, t)) · νK dσ. (3.1)

Here νK denotes (instead of νK,∂Ω) the unit normal to the face that points outside Ω. Then the finite volume
scheme yields for such K :

vol(K)
dvK
dt

+
∑

L∈N (K)

area(K ∩ L)Φ(vK , vL;K,L) (3.2)

+
∑

K∩∂Ω

area(K ∩ ∂Ω)Φ(vK ,K, ∂Ω) = 0.
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In practice, this flux is not given by the physical boundary conditions and moreover, in general, (2.1) is an
ill-posed problem if we try to impose either v or F (v) ·νK on ∂Ω. This can simply be understood by analyzing
the characteristics. Let us consider the linearization of the system around the state v and its projection on the
normal direction to the face :

∂v

∂t
+AνK

∂v

∂ν
= 0 , (3.3)

where ∂v
∂ν

= ∇v · νK and where AνK is the advection matrix (see (2.24)) :

AνK ≡ AνK (v) . (3.4)

Since (2.1) is assumed to be hyperbolic, the matrixAνK is diagonalizable on R and by a change of coordinates,
this system has the form of an uncoupled set of m advection equations :

∂ηk
∂t

+ λk
∂ηk
∂ν

= 0 , k = 1, . . . ,m . (3.5)

Here the λk = λk(v, νK) are the eigenvalues of AνK and according to the sign of these numbers, waves are
going either into the domain Ω (λk < 0) or out of the domain Ω (λk > 0). Hence we expect that it is only
possible to impose χ conditions on K ∩ ∂Ω where χ ≡ ]{k ∈ {1, . . . ,m} such that λk < 0}.

We denote by x the coordinate along the outer normal, then system (3.3) reads :

∂v

∂t
+AνK

∂v

∂x
= 0 , (3.6)

which happens to be the linearization of the 1-dimensional (i.e. when nd = 1) system.

At this point there are two different situations. The first one (which is termed as the non characteristic case
in the literature) refers to the case where the matrix AνK is invertible, while the second one refers to the
complementary case.

3.1 The non characteristic case
We label the eigenvalues λk(v, νK) of AνK by increasing order :

λ1(v, νK) ≤ λ2(v, νK) ≤ . . . ≤ λχ(v, νK) < 0 < λχ+1(v, νK) . . . ≤ λm(v, νK) .

3.1.1 The case χ = 0

In this case, all the information comes from inside Ω and therefore we take :

Φ(vK ,K, ∂Ω) = F (vK) · νK . (3.7)

In the Computational Fluid Dynamics literature, this is known as the ”supersonic outflow” case.

3.1.2 The case χ = m

In this case, all the information comes from outside Ω and therefore we take :

Φ(vK ,K, ∂Ω) = Φgiven , (3.8)

where Φgiven is the flux computed from the given physical boundary conditions. In the Computational Fluid
Dynamics literature, this is known as the ”supersonic inflow” case.

3.1.3 The case 1 ≤ χ ≤ m− 1

As already discussed in the introduction of this Section, we need χ scalar information coming from outside of
Ω. Hence we assume that we have on physical ground χ relations on the boundary :

gk(v) = 0 , k = 1, . . . , χ . (3.9)

Remark 2 The notation gk(v) = 0 means that we have a relation between the components of v. However, in
general, the function gk is not given explicitly in terms of v. In Example 2.1.5, for Euler equations, gk(v) could
be the pressure which is not one of the components of v.
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Since we have to determine the m components of Φ(vK ,K, ∂Ω), we need m− χ supplementary scalar infor-
mation. Let us write them as

hk(v) = 0 , k = χ+ 1, . . . ,m. (3.10)

In general conditions (3.9) are named as ”physical boundary conditions” while conditions (3.10) are named as
”numerical boundary conditions”.
Then we take :

Φ(vK , K, ∂Ω) = F (v) · νK , (3.11)

where v is solution to (3.9)-(3.10) (see however Remark 18 and Section 8 for a practical point of view).

Remark 3 The system (3.9)-(3.10) for the m unknowns v ∈ G is a m×m nonlinear system of equations. We
are going to study its solvability in Theorem 1.

Let us now first discuss the numerical boundary conditions (3.10). The m − χ supplementary information we
need, come from inside of Ω. A natural idea is then to use the advection equation (3.5) which is, of course, a
first order approximation of the nonlinear equation (2.1), with ηk ≡ lk(v, νK) · v and λk ≡ λk(v, νK).
Since for k ≥ χ+ 1 we have λk(v, νK) > 0, we know that lk(v, νK) · v(x, t) on the boundary (ie for x ∈ ∂Ω)
at time t depends on the values of lk(v, νK)·v inside Ω. This suggests that the so-called characteristic boundary
conditions :

lk(v, νK) · v = lk(v, νK) · vK , k = χ+ 1, . . . ,m , (3.12)

are good candidates for (3.10). Actually we prefer a slightly different boundary condition that reads :

lk(v, νK) · (F (v) · νK) = lk(v, νK) · (F (vK) · νK) , k = χ+ 1, . . . ,m . (3.13)

In fact (3.12) was derived with v = vK in the context of finite differences (we refer to the book of Hirsch [32]
Chapter 19). We think, and this is also confirmed by our numerical experience, that (3.13) is more adapted to
the finite volume approach since the unknown is the normal flux F (v) · νK on the boundary K ∩ ∂Ω.
Hence the m− χ supplementary information (3.10) are settled to :

hk(v) ≡ lk(v, νK) · (F (v) · νK)− lk(v, νK) · (F (vK) · νK) , k = χ+ 1, . . . ,m. (3.14)

We are going to prove the following result on the solvability of (3.9)-(3.10).

Theorem 1 In the case where 1 ≤ χ ≤ m−1, (recall that we are in the non characteristic case : λk(v, νK) 6=
0, k = 1, . . . ,m) and

det1≤k,l≤χ

(
m∑

i=1

ril(v, νK)
∂gk
∂vi

(v)

)
6= 0 ; (3.15)

with the choice (3.14) for the relations hk(v), the nonlinear system (3.9)-(3.10) has one and only one solution
v, for v − v, gk(v) and hk(v) sufficiently small.

Remark 4 It follows immediately from (3.15) that the functions gk are functionally independent.

Proof We take the fixed vectors rl(v, νK) ≡ (r1
l (v, νK), . . . , rml (v, νK)) for representing the difference be-

tween the variables v and v :

v = v +
m∑

l=1

ξlrl(v, νK)

and we denote by L(·) the nonlinear function from Rm into itself defined by :

L(ξ) ≡




g1(v +
m∑

l=1

ξlrl(v, νK))

· · ·

gχ(v +

m∑

l=1

ξlrl(v, νK))

hχ+1(v +
m∑

l=1

ξlrl(v, νK))

· · ·

hm(v +
m∑

l=1

ξlrl(v, νK))




.

Let us then compute the partial derivatives of L with respect to the ξl :

∂Lk
∂ξl |ξ=0

=

m∑

i=1

ril(v, νK)
∂gk
∂vi

(v) , k = 1, . . . , χ , (3.16)
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∂Lk
∂ξl |ξ=0

= λk(v, νK)δk,l , k = χ+ 1, . . . ,m . (3.17)

Now thanks to condition (3.15) and the fact that λk(v, νK) 6= 0, for k = χ+1, . . . ,m, we see that the Jacobian
matrix of L is invertible at the point ξ = 0. On the other hand, since the size of L(0) is small when the gk(v)
and hk(v) are small, we can apply the local inversion theorem to conclude the proof of Theorem 1.

Remark 5 If we take instead of (3.14),

h̃k(v) ≡ lk(v, νK) · v − lk(v, νK) · vK , k = χ+ 1, . . . ,m (3.18)

we have the following result.

Theorem 2 In the case where 1 ≤ χ ≤ m−1, (recall that we are in the non characteristic case : λk(v, νK) 6=
0, k = 1, . . . ,m) and

det1≤k,l≤χ

(
m∑

i=1

ril(v, νK)
∂gk
∂vi

(v)

)
6= 0 ; (3.19)

with the choice (3.18) instead of (3.14) for the relations hk(v), the nonlinear system (3.9)-(3.10) has one and
only one solution v, for v − v, gk(v) and hk(v) sufficiently small.

Remark 6 Now we have to discuss the choice of v. From Theorem 1, gk(v) for k = 1, . . . , χ and hk(v) for
k = χ + 1, . . . ,m have to be “sufficiently small”. Therefore the best choice should be the state v, solution
to the system (3.9)-(3.10) for which gk and hk are zero. But since the computation of the eigenelements of the
matrix AνK may be complex and the system (3.9)-(3.10) may be even more nonlinear, in practice an “easily
computed” approximation of v is used. Usually v is taken equal to the interior state : v = vK . However, from
a practical point of view, it might be possible to use other approximations : see for instance the case of the
boundary conditions at infinity in Section 3.4.

Remark 7 If the condition (3.15) guarantees the existence of a solution to (3.9)-(3.10), it does not necessarily
guarantee that the discrete solution of the hyperbolic system will be an admissible solution i.e. will satisfy any
entropy admissibility condition.

3.2 The characteristic case
If n0 ≥ 1 denotes the dimension of the kernel of the matrix AνK appearing in (3.3), we label its eigenvalues as
follows :

λ1(v, νK) ≤ λ2(v, νK) ≤ . . . ≤ λχ(v, νK) < 0 < λχ+n0+1(v, νK) . . . ≤ λm(v, νK) ,
λχ+1(v, νK) = . . . = λχ+n0(v, νK) = 0 .

3.2.1 The case χ = 0

In this case, we simply follow the non characteristic case where we consider that all the information comes
from inside and we take again (3.7)

Φ(vK ,K, ∂Ω) = F (vK) · νK . (3.20)

3.2.2 The case χ+ n0 = m

Again we simply follow the non characteristic case where we consider that all the information comes from
outside and we take again (3.8)

Φ(vK ,K, ∂Ω) = Φgiven . (3.21)

3.2.3 The case 1 ≤ χ ≤ m− n0 − 1

We have χ scalar information coming from outside of Ω. Hence we assume that we have, on the physical
ground, χ relations on the boundary :

gk(v) = 0 , k = 1, . . . , χ . (3.22)

Since we have to determine the m components of Φ(vK ,K, ∂Ω), we need m− χ supplementary scalar infor-
mation. Let us first write m − χ − n0 conditions according to what we have done in the non characteristic
case :

lk(v, νK) · (F (v) · νK) = lk(v, νK) · (F (vK) · νK) , k = χ+ n0 + 1, . . . ,m . (3.23)
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At first sight, we need n0 supplementary information to determine the m components of the normal flux
F (v) · νK . But since the mapping v → F (v) · νK has a non invertible Jacobian for v = v, it happens
that it is not true. For instance in the case of the Euler equations, for the wall boundary condition, since the
relation (3.22) simply reads u · νK = 0, the normal flux F (v) · νK = (0, pνK , 0) depends on only one vari-
able, the pressure pwhich may indeed be determined with relation (3.23). We refer to Section 6.1 for full details.

In the linear case, the situation is much simpler since F (v) · νK = AνKv has exactly m − n0 independent
components and there is only one numerical flux F (v) · νK satisfying (3.22)-(3.23) provided again condition
(3.15) holds true. Indeed the proof of Theorem 1 holds if the difference between the variables v and v is
replaced by

v − v =

χ∑

l=1

ξlrl(v, νK) +

m∑

l=χ+n0+1

ξlrl(v, νK).

Let us remark that v solution of (3.22)-(3.23) is no longer unique. We refer to Section 5.1 for the multidimen-
sional wave equation and to Section 5.2 for Maxwell’s equations.

3.3 Riemann invariants and boundary conditions treatment

3.3.1 The Riemann problem and pseudo Riemann invariants

As it is well known, the Riemann problem for one dimensional hyperbolic equations has played a very important
role for the numerical computations of its solutions. Godunov [29] has based his famous method on the explicit
solution to this problem and later Roe [46] has simplified a lot Godunov’s method by introducing a relevant
linear problem at each interface for which (like for any linear hyperbolic system in one space dimension) the
Riemann problem is straightforward to compute. Up to now, this strategy has not been generalized to higher
space dimensions ; and there are profound reasons for that : even on Cartesian meshes and for linear equations,
the solution to the Riemann problem is not simple to obtain and no closed formulas are available. Nevertheless,
multidimensional problems can benefit from one dimensional ones by considering at each interface the normal
equation, that is :

∂v

∂t
+
∂F (v) · νK

∂ν
= 0 . (3.24)

Here νK denotes a unitary normal vector on the interface and ν a coordinate in the direction of νK . Having
fixed this interface, we denote by f(v) ≡ F (v) · νK and by x the previous coordinate so that we are in the one
dimensional setting :

∂v

∂t
+
∂f(v)

∂x
= 0 . (3.25)

We denote here by A(v) the Jacobian matrix ∂f(v)
∂v

. We assume that (3.25) is hyperbolic (see Definition 1) and
introduce an eigensystem of A(v) composed of

• the set of the real eigenvalues : λ1(v) ≤ . . . ≤ λm(v),

• a set (l1(v), . . . , lm(v)) of left eigenvectors satisfying :

tA(v) lk(v) = λk(v)lk(v), for k = 1, . . . ,m,

• a set (r1(v), . . . , rm(v)) of right eigenvectors satisfying :

A(v) rk(v) = λk(v)rk(v), for k = 1, . . . ,m.

and the following normalization : (k, p = 1, . . . ,m)

lk(v) · rp(v) = δk,p .

For these one dimensional systems we have the classical notion of Riemann invariants (see Definition 4). Ac-
tually this definition can be introduced for a general hyperbolic system of equations that reads as :

∂v

∂t
+A(v)

∂v

∂x
= 0 . (3.26)

In other words, the conservative structure of (3.25) is not needed and we shall have in mind to deal with regular
solutions.

Definition 4 A function W from G into R is a Riemann invariant for (3.26) provided that for every v ∈ G, the
vector∇W (v) is a left eigenvector of A(v) : ∃λ : G→ R such that

tA(v)∇W (v) = λ(v)∇W (v) . (3.27)
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Remark 8 Let W be a Riemann invariant. If ∇W (v) is parallel to one of the lp(v) (this will always be the
case when the eigenvalues are simple) then for every k 6= p we have :

rk(v) · ∇W (v) = 0 . (3.28)

In the case where one can find m independent3 Riemann invariants W1, . . . ,Wm, it is possible to diagonalize
(3.26) :

∂Wk(v)

∂t
+ λk(v)

∂Wk(v)

∂x
= 0 , (3.29)

(this is only valid for regular solutions). On the one hand, it is not possible, in general, to find m independent
Riemann invariants : systems for which this is possible are ”completely integrable systems”. On the other hand,
linear hyperbolic systems are always integrable since we can take

Wk(v) ≡ lk · v . (3.30)

Let us return to the general case. Since it is not possible to find m independent functions satisfying (3.27), we
are going to find m− 1 functions satisfying (3.28). More precisely we first set the following definition.

Definition 5 A function W from G into R is a k-pseudo Riemann invariant for (3.26) provided that for every
v ∈ G, the vector∇W (v) satisfies :

rk(v) · ∇W (v) = 0 . (3.31)

A classical result is then (see e.g. Smoller [51]) as follows.

Theorem 3 Let v be given in G. For every k ∈ {1, . . . ,m}, there exists ε > 0 and m − 1 independent
k-pseudo Riemann invariants in the set of those v for which ||v − v|| ≤ ε.
Among the solutions of (3.25), the simple waves play a distinguished role.

Definition 6 A weak solution w(x, t) to (3.25) is called a k-simple wave provided that for every k-pseudo
Riemann invariant W , W (w(x, t)) is constant with respect to x and t.

These solutions are important because they are the building blocks of the solution to the Riemann problem
associated with (3.25) (see again for instance Smoller [51]). Recall that the Riemann problem associated for
(3.25) consists in solving this equation with the initial data :

v(x, 0) = vl for x < 0 and v(x, 0) = vr for x > 0 . (3.32)

As it is well known, the Riemann problem is central in the Godunov method where at each numerical interface
one solves such a problem. Although this approach is known to be be somewhat costly (with regards to CPU)
and only tractable for a very limited number of problems, we mention it because it happens to be used for
finding boundary conditions with a nonlinear approach : see Section V.2 of Godlewski and Raviart [28] and
references therein.
Recall that the solution to (3.25)-(3.32) is constructed by gluingm-simple waves. More precisely one findsm−
1 constant states v1, . . . , vm−1 and glues together m simple waves joining vk to vk+1 for k = 0, 1, . . . ,m− 1
with v0 = vl and vm = vr . According to Definition 6, in order to effectively construct the solution to the
Riemann problem, it is important to find the k-pseudo Riemann invariants.

Remark 9 Let us observe that the k-pseudo Riemann invariants can be computed for any arbitrary system of
variables. Indeed, if we change the dependent variables v, it will change the matrix A(v) in (3.25) but pseudo
Riemann invariants will not be affected ! This can be seen as follows. Assume that we take v = ϕ(v) a new set
of variables in Rm. Equation (3.26) reads now as :

∂v

∂t
+A(v)

∂v

∂x
= 0 , (3.33)

where A(v) ≡ J(v)A(v)J−1(v) with v = ϕ−1(v) and J(v) ≡ ∂ϕ(v)
∂v

. Of course the right eigenvectors
of A(v) can simply be taken as the rk(v) ≡ J(v)rk(v) and for a given function W (v), if one denotes by
W (v) ≡W (ϕ−1(v)) the corresponding function in the v variables, one can easily compute that

rk(v) · ∇vW (v) = rk(v) · ∇vW (v) .

In view of Definition 5, this proves our claim that pseudo Riemann invariants do not depend on the set of
dependent variables we are using. An important consequence of that is that one can use ”adapted” variables
to solve the first order linear differential equation (3.31). This technique is successfully applied to the one-
dimensional Euler system (see Section 10.1.5).

3Recall that m functions W1, . . . ,Wm are said to be independent if for every v the vectors ∇W1(v), . . . ,∇Wm(v) are linearly
independent.
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3.3.2 Application to the boundary condition problem

At a boundary, it is not possible to solve the Riemann problem since the exterior state is not known. For
instance, the strategy proposed by Dubois and LeFloch [20], Dubois [19], see also Buffard et al [7] for a
linearized version, consists in solving an ”incomplete” Riemann problem4. For a case where 1 ≤ χ ≤ m − 1
i.e. where χ information are entering into the domain, this strategy solves (3.25) with the initial data :





v(x, 0) = v for x < 0
and

v(x, 0) satisfies χ physical conditions for x > 0.
(3.34)

Let us note the χ physical boundary conditions :

gk(v) = 0 , k = 1, . . . , χ . (3.35)

The ”incomplete” Riemann problem method consists then in finding χ − 1 intermediate states µ1, . . . , µχ−1

such that v is connected to µ1 through a 1-simple wave, µ1 is connected to µ2 through a 2-simple wave, . . . ,
µχ−1 is connected to v through a χ-simple wave. Using Definition 6, we can rewrite these conditions, with
µ0 ≡ v and µχ ≡ v, as :

W `
k(µ`−1) = W `

k(µ`) , k = 1, . . . ,m− 1 , ` = 1, . . . , χ , (3.36)

where {W `
k}k=1,...,m−1 is a family of m − 1 independent `-pseudo Riemann invariants (in the vicinity of v).

The system (3.35)-(3.36) is made of m × χ scalar equations for m × χ scalar unknowns : the coordinates of
µ1, . . . , µχ (provided the pseudo Riemann invariants have been computed). Figure 1 depicts the solution of the
incomplete Riemann problem which comprises χ simple waves in the plane (x, t). More details concerning
their values are given in Section 10 in the context of one dimensional Euler equations.

Interior of Domain Exterior of Domain

t

2

v_

v

n

χ−1

µ1

µ

µ

x

Figure 1: The plane (x, t) for the “incomplete” Riemann problem.

Let us emphasize that the method we propose in Section 3.1.3, replaces the system (3.36) by the system of
m− χ equations :

lk(v) · f(v) = lk(v) · f(v) , k = χ+ 1, . . . ,m. (3.37)

Hence our method appears to be much simpler than the one that uses an incomplete Riemann problem. In a
certain sense, system (3.37) solves system (3.36) for v. Actually, system (3.37) provides an approximation for
the solution of (3.36). Let us study now the relationship between these two systems.

3.3.3 Comparison with our method

Setting. Let us, as a typical example, consider the case where χ = m − 1 that is the case where m − 1
information are entering into the domain : this case occurs e.g. in the context of fluid dynamics for a subsonic
inlet, see Section 10.1. Let us give a state v such that

λ1(v) ≤ . . . ≤ λm−1(v) < 0 < λm(v) , (3.38)

and where 0 is not an eigenvalue (non characteristic case). Let us recall that for the “incomplete” Riemann
method, them−2 intermediates states µ1, . . . , µm−2 satisfy the following system made ofm×(m−1) scalar
equations with µ0 ≡ v and µm−1 ≡ v :

W `
k(µ`−1) = W `

k(µ`) , k = 1, . . . ,m− 1 , ` = 1, . . . ,m− 1 , (3.39)

4The terminology “partial” or “half” Riemann problem is also used.
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and that our strategy replaces this system by the single equation :

lm(v) · f(v) = lm(v) · f(v) . (3.40)

Given ε > 0, we introduce the three sets :

Eε =

{
v ∈ G/
||v − v|| ≤ ε and lm(v) · f(v) = lm(v) · f(v)

}
, (3.41)

Fε =





(v, µ1, . . . , µm−2) ∈ Gm−1 /
||v − v|| ≤ ε , ||µi − v|| ≤ ε , i = 1, . . . ,m− 2 , and
W `
k(µ`−1) = W `

k(µ`) , k = 1, . . . ,m− 1 , ` = 1, . . . ,m− 1



 , (3.42)

Gε ≡ Pr1(Fε) =

{
v ∈ G/
∃µ = (µ1, . . . , µm−2) ∈ Gm−1 with (v, µ) ∈ Fε

}
. (3.43)

Clearly Eε is related to our method for imposing the boundary conditions while Fε and Gε are related to the
method relying on the Riemann invariants.

Relation between Eε and Gε. Our goal is to show the following result.

Theorem 4 With the previous notations and under assumption (3.38), there exists ε0 and two functions φ and
φ̃ defined respectively on neighborhoods O and Õ of 0 in Rm−1 such that for every ε < ε0 we have :

Eε =

{
v +

m−1∑

i=1

αiri(v) + φ(α1, . . . , αm−1)rm(v) , (α1, . . . , αm−1) ∈ O
}
, (3.44)

Gε =

{
v +

m−1∑

i=1

βiri(v) + φ̃(β1, . . . , βm−1)rm(v) , (β1, . . . , βm−1) ∈ Õ
}
. (3.45)

Moreover φ(0) = φ̃(0) = 0 and ∇φ(0) = ∇φ̃(0) = 0 i.e. the two sets are tangent at the point v to the
hyperspace orthogonal to lm(v).

Proof i) Let us first characterize the set Eε. For we represent all the points in G by the coordinates α ≡
(α1, . . . , αm) as follows : v = v+

∑m
i=1 αiri(v). In order to rewrite (3.40) in these coordinates, first we write

the Taylor expansion :

f(v) = f(v) +A(v)(v − v) +

∫ 1

0

(1− θ)∂A
∂v

(θv + (1− θ)v)(v − v, v − v)dθ ,

and then we take the product scalar with lm(v) so that

lm(v) · f(v) = lm(v) · f(v) + λm(v)αm + lm(v) ·
∫ 1

0

(1− θ)∂A
∂v

(θv + (1− θ)v)(v − v, v − v)dθ .

Introducing the function g defined on a neighborhood of 0 by the formula

g(α1, . . . , αm) ≡ (3.46)

lm(v) ·
∫ 1

0

(1− θ)∂A
∂v

(
v + θ

m∑

i=1

αiri(v)

)(
m∑

i=1

αiri(v),
m∑

i=1

αiri(v)

)
dθ ,

we see that (3.40) simply reads as

λm(v)αm + g(α1, . . . , αm) = 0 . (3.47)

Since g is flat at α = 0, we have g(0) = 0 and
∂g

∂αi
(0) = 0 for all i. Hence, by application of the classical im-

plicit function theorem, for small α, equation (3.47) has a unique solution αm = φ(α1, . . . , αm−1). Moreover
by differentiating the equation

λm(v)φ(α1, . . . , αm−1) + g(α1, . . . , αm−1, φ(α1, . . . , αm−1)) = 0 , (3.48)

with respect to αi, i = 1, . . . ,m− 1, we obtain that∇φ(0) = 0. This shows the first part of Theorem 4.
ii) Concerning Gε, we start with the study of Fε and prove the following result.
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Proposition 1 With the previous notations and under assumption (3.38), there exists ε0 andm(m−1) functions
ψi,` defined on a neighborhood ]− η`,+η`[ of 0 in R such that for every ε < ε0 we have :

F `ε =





µ` = µ`−1 +
∑

i6=`
ψi,`(α`)ri(µ`−1) + α`r`(µ`−1) /

|α`| ≤ η`



 , (3.49)

where for ` = 1, . . . ,m− 1,

F `ε ≡





(µ`−1, µ`) ∈ G2 /
||µ`−1 − v|| ≤ ε, ||µ` − v|| ≤ ε and
W `
k(µ`−1) = W `

k(µ`) , k = 1, . . . ,m− 1



 . (3.50)

Moreover the functions ψi,` are flat at α` = 0 i.e. ψi,`(0) = 0 and ψ′i,`(0) = 0.

Proof For ` fixed between 1 and m− 1, we start with

W `
k(µ`−1) = W `

k(µ`) , k = 1, · · · ,m− 1, (3.51)

and we write

µ` = µ`−1 +
m∑

i=1

αiri(µ`−1). (3.52)

Performing a Taylor expansion of the function W `
k(µ`−1 +

∑m
i=1 αiri(µ`−1)) with respect to α, we obtain :

W `
k(µ`) = W `

k(µ`−1) +
m∑

i=1

αiri(µ`−1) · ∇W `
k(µ`−1) + h`k(α1, . . . , αm) , (3.53)

where the function h`k is flat at α = 0. Hence (3.51) reads as :

m∑

i=1

αiri(µ`−1) · ∇W `
k(µ`−1) + h`k(α1, . . . , αm) = 0 . (3.54)

But according to Definition 5, r`(µ`−1) · ∇W `
k(µ`−1) = 0 so that we have in fact :

∑

i6=`
αiri(µ`−1) · ∇W `

k(µ`−1) + h`k(α1, . . . , αm) = 0 , k = 1 . . . ,m− 1 . (3.55)

This is a system of m − 1 equations for the m unknowns (αi)1≤i≤m, but since the m − 1 pseudo-Riemann
invariants W `

k are independent, the determinant

det

i = 1, . . . ,m ; i 6= `
k = 1, . . . ,m− 1

(
ri(µ`−1) · ∇W `

k(µ`−1)
)

is different from zero (see Lemma 1 hereafter) and by the implicit function theorem, we can express all the αi’s
for i 6= ` as functions of α`. That is (3.55) can be solved as

µ` = µ`−1 +
∑

i6=`
ψi,`(α`)ri(µ`−1) + α`r`(µ`−1) , |α`| ≤ η` . (3.56)

Now since the functions hk are flat at α = 0, we also deduce that ψi,`(0) = 0 and ψ′i,`(0) = 0. And this
achieves the proof of Proposition 1.
Then returning to that of Theorem 4, we write all the characterizations (3.49) :

µ` = φ`(α`, µ`−1), ` = 1, · · · ,m− 1. (3.57)

Then setting η ≡ inf{ηi, i = 1, . . . ,m− 1}, since µ0 = v and µm−1 = v, we obtain v as an implicit function
of v and the αi’s, for |αi| ≤ η, i = 1, . . . ,m− 1 :

v = φm−1(αm−1, φm−2(αm−2, · · · , φ1(α1, v) · · · )) (3.58)

From an application of the implicit function theorem, it results that v may be uniquely written as a function of
(β1, · · · , βm−1, v) and using the fact that ψi,`(0) = 0 and ψ′i,`(0) = 0, it results that the form (3.45) holds
true.
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It remains to establish the following technical result.

Lemma 1 The determinant

det

i = 1, . . . ,m ; i 6= `
k = 1, . . . ,m− 1

(
ri(µ`−1) · ∇W `

k(µ`−1)
)

is different from zero.

Proof We consider a null combination of the columns of the m − 1 square matrix whom element (i, k) is
ri(µ`−1) · ∇W `

k(µ`−1) for i 6= ` and k = 1, . . . ,m− 1 :

m−1∑

k=1

ωkri(µ`−1) · ∇W `
k(µ`−1) = 0 , i 6= ` , (3.59)

that is

ri(µ`−1) ·
m−1∑

k=1

ωk∇W `
k(µ`−1) = 0 , i 6= ` . (3.60)

Since r`(µ`−1) · ∇W `
k(µ`−1) = 0 we infer that

m−1∑

k=1

ωk∇W `
k(µ`−1) = 0. (3.61)

But the m−1 pseudo-Riemann invariants W `
k are independent and therefore all the ωk vanish. This shows that

the columns of the aforementioned matrix are independent and therefore its determinant is not zero.

Conclusion. We have studied the case χ = m − 1, of course the other cases 1 ≤ χ are totally similar.
As shown by Theorem 4, the two methods lead to close results but for our method, neither k-pseudo Riemann
invariants have to be computed, nor a so large system of scalar equations as for the Riemann invariants based
method have to be solved.

3.4 Boundary conditions at infinity
Let us consider the case where the physical domain is unbounded, for example the case where the domain is
the exterior of a bounded set S. For practical reasons, the computational domain, Ω, must be bounded and this
leads to introduce a boundary “far” from ∂S which is called the boundary at infinity (see Figure 2).

Ω

S

Γ∝

Figure 2: A domain with boundary conditions at infinity.

We want here to discuss the boundary condition treatment on Γ∞ = ∂Ω \ ∂S. More precisely, we consider the
case where the physical boundary condition at infinity corresponds to a given state v∞ such that

v −→ v∞ as |x| −→ ∞ . (3.62)
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Let us remark that if the boundary is not sufficiently far from ∂S, then a numerical boundary has to be deter-
mined :see Section 3.5.
For a control volume which meets the boundary Γ∞, we have to find like in Section 3 the normal flux
Φ(vK , K,Γ∞) that approximates

∫
K∩Γ∞

F (v(σ, t)) · νK dσ. Consider the eigenvalues λk(v∞, νK) still or-
dered by increasing order :

λ1(v∞, νK) ≤ λ2(v∞, νK) ≤ . . . ≤ λχ(v∞, νK) < 0 ≤ λχ+1(v∞, νK) . . . ≤ λm(v∞, νK) . (3.63)

We propose to take :

Φ(vK , K,Γ∞) =
∑

k/λk(v∞,νK)<0

lk(v∞, νK) · (F (v∞) · νK)rk(v∞, νK)

+
∑

k/λk(v∞,νK)≥0

lk(v∞, νK) · (F (vK) · νK)rk(v∞, νK)
(3.64)

This amounts to take Φ(vK ,K,Γ∞) solution to the following system :




lk(v∞, νK) · Φ(vK ,K,Γ∞) = lk(v∞, νK) · (F (v∞) · νK) , k = 1, . . . , χ

lk(v∞, νK) · Φ(vK ,K,Γ∞) = lk(v∞, νK) · (F (vK) · νK) , k = χ+ 1, . . . ,m .
(3.65)

Remark 10 This approach is different from taking :

Φ(vK ,K,Γ∞) = F (v∞) · νK (3.66)

In the case where the code is run in order to find a stationary solution (ie a solution of divF (v) = 0), it is clear
that close to convergence, formulation (3.64) and (3.66) for the normal flux at infinity will give almost the same
results. However during transients, formulation (3.64) is better.

3.5 Numerical boundary conditions

3.5.1 More accurate boundary condition at infinity

In Section 3.4, it was assumed that the truncation of the domain does not affect the value on the boundary Γ∞,
we took v∞ on this boundary as if it was at infinity. This approach turns out to be effective in practice when the
boundary Γ∞ is sufficiently far from the set S. For example, in the case of an airfoil, Γ∞ has to be at least 50
chords from the profile.
On the other hand, one wishes to have the smallest possible computational domain and therefore one has to
modify the previous boundary condition (3.64). A possible method consists in correcting the state v∞ into an
other state say ṽ∞. This has to be done via an ad hoc procedure depending on the system. Once the state ṽ∞
has been chosen, we replace (3.64) by :

Φ(vK , K,Γ∞) =
∑

k/λk(ṽ∞,νK)≤0

lk(ṽ∞, νK) · (F (ṽ∞) · νK)rk(ṽ∞, νK)

+
∑

k/λk(ṽ∞,νK)>0

lk(ṽ∞, νK) · (F (vK) · νK)rk(ṽ∞, νK)
(3.67)

Returning to the case of an airfoil, one obtains ṽ∞ by linearizing the Euler equation and by using the so called
far field correction (see e.g. Chapter 19.3 of Hirsch [32]).

3.5.2 Cases with symmetries

The numerical boundary condition
Φ(vK , K, ∂Ω) = F (vK) · νK (3.68)

can be implemented in at least two cases where numerical boundary reduces the computational domain : the
case where the solution is symmetric with respect to an hyperplane and the case where it does not depend on
one of the space variables (e.g. one-dimensional computation with a two-dimensional code).
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4 An extension to the nonconservative case
Let us now address the case of nonconservative systems. Such systems arise in several contexts of continuous
media modelling. Our motivation for studying them stems from two phase fluid mechanics, see Section 7. Here
v = (v1, . . . , vm) ∈ Rm and in general these systems read as :

∂v

∂t
+∇ · F (v) +

nd∑

j=1

C̃j(v)
∂v

∂xj
+D(v)

∂v

∂t
= S̃(v) , (4.1)

where C̃j(v), D(v) are m×m matrices, S̃(v) is a m-vector and where

∇ · F (v) =
nd∑

j=1

∂F j(v)

∂xj
.

Functions F j maps G into Rm, and G is an open subset of Rm corresponding to the physically admissible
states.
We rewrite equation (4.1) as :

(
�

+D(v))
∂v

∂t
+∇ · F (v) +

nd∑

j=1

C̃j(v)
∂v

∂xj
= S̃(v) , (4.2)

and observe that if the matrix
�

+D(v) is not invertible, this means that (4.1) is not an evolution equation but
rather the coupling of an evolutionary differential equation and of the following nonlinear equation :

∇ · F (v) +

nd∑

j=1

C̃j(v)
∂v

∂xj
− S̃(v) ∈ Range of (

�
+D(v)) . (4.3)

For example, modelling of incompressible flows lead to such a situation, and (4.3) amounts in this case to the
incompressibility condition div u = 0.
We then assume that the matrix

�
+D(v) is invertible. It yields that system (4.1) is equivalent to :

∂v

∂t
+∇ · F (v) +

nd∑

j=1

Cj(v)
∂v

∂xj
= S(v) . (4.4)

We have kept the flux F (v) unchanged between (4.1) and (4.4). The reason for this is as follows. We assume
that (4.1) has been written under this form for physical considerations. The form (4.1) is not unique : indeed
one can add to F (v) any function G(v) and (4.1) will remain unchanged for smooth solutions provided we

subtract to C̃j(v) the Jacobian matrix ∂Gj(v)
∂v

. Since there is no uniqueness, the choice for the flux function
F must follows from ad hoc considerations, like physical ones. This choice will be related to the so-called
conservative variables v. Observe that here this denomination is inappropriate since the system is non conser-
vative ! However, once the physical context has been made precise, for example two fluid models like those
described in Section 7, the variables which are conserved even in the presence of shocks are known (classically
mass, momentum and total energy are conserved). Once these variables v have been chosen, again physical
considerations are used to derive their fluxes F . For example in the case of two fluid models, one can ask that
these fluxes correspond to that of single fluid model when one of the two phases disappears. Once these fluxes
have been chosen, we keep them also in the formulation (4.4). Then we take

S(v) = (
�

+D(v))−1S̃(v)

and

Cj(v) = (
�

+D(v))−1

(
C̃j(v) +

∂F j(v)

∂v

)
− ∂F j(v)

∂v
j = 1, . . . , nd.

Therefore it yields equation (4.4) which is a generalization of (2.1).

4.1 A finite volume discretization
The analog of equation (2.59) is now

vol(K)
dvK
dt

+ F ν∂K +

∫

K

nd∑

j=1

Cj(v)
∂v

∂xj
dx =

∫

K

S(v) dx . (4.5)
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Hence the time evolution of vK(t) is governed by 3 terms :

F ν∂K(t) =

∫

∂K

F (v(σ, t)) · ν(σ) dσ, (4.6)

∫

K

nd∑

j=1

Cj(v)
∂v

∂xj
dx , (4.7)

∫

K

S(v) dx . (4.8)

The first one, (4.6), is the normal flux on the boundary of K, and in order to approximate it, we use again a
formula that reads as (2.63) : more details are given in Section 4.1.1 The second one is a non conservative
product which will be dealt in Section 4.1.2. Finally the third one is a source term i.e. it contains no derivative.
For the later, a natural discretization reads as :

∫

K

S(v) dx ≈ vol(K)S(vK) . (4.9)

4.1.1 Approximation of the conservative term

As in Section 2.3.1, F ν∂K is decomposed in a sum :

F ν∂K =
∑

L∈N (K)

FK,L , with FK,L =

∫

K∩L
F (v(σ, t)) · νK,L dσ . (4.10)

and the integral on K ∩ L is approximated by a numerical flux φ(vK , vL, K, L). Here this later is obtained
from ”VFFC” method by formula (2.66) when we take :

U(v, w;K,L) = sgn(Ãν(µ(v, w;K,L))) , (4.11)

where µ(v, w;K,L) is a mean between v and w depending on the geometry, e.g. (2.68). Let us now defined
the matrix Ãν(v).
In order to find an expression for the function Φ(v, w;K,L), we write equation (4.4) in coordinates which
are adapted to the edge K ∩ L. For fixed adjacent volumes K and L, we denote by (ν, τ1, . . . , τnd−1) these
coordinates : ν is the unit normal to the interface K ∩ L oriented from K to L and τ1, . . . , τnd−1 is an
orthonormal basis of the hyperplane orthogonal to ν. By a change of independent variables and with natural
notations (Fν(v) = F (v) · ν, Cν(v) = C(v) · ν, Fτ (v) =

∑nd−1
i=1 F (v) · τi), we can rewrite equation (4.4)

as :
∂v

∂t
+
∂Fν(v)

∂ν
+ Cν(v)

∂v

∂ν
+∇τ · Fτ (v) +

nd−1∑

i=1

Cτi(v)
∂v

∂τi
= S(v) . (4.12)

Next, introducing the matrix

Eν(v) ≡ Cν(v)Jν(v)−1 where Jν(v) ≡ ∂Fν(v)

∂v
, (4.13)

we observe that (4.12) can be written as :

∂v

∂t
+ (

�
+ Eν(v))

∂Fν(v)

∂ν
+∇τ · Fτ (v) +

nd−1∑

i=1

Cτi(v)
∂v

∂τi
= S(v) . (4.14)

Hence the unknown Fν(v), that we want to approximate, satisfies at the continuous level the following evolution
equation :

∂Fν(v)

∂t
+ Jν(v)(

�
+ Eν(v))

∂Fν(v)

∂ν
(4.15)

+ Jν(v)∇τ · Fτ (v) +

nd−1∑

i=1

Jν(v)Cτi(v)
∂v

∂τi
= Jν(v)S(v) .

Since our goal is to approximate the integral of Fν(v) on K ∩ L, we first linearize equation (4.15) on the edge
K ∩ L by using a mean value for v on K ∩ L, let say µ = µ(vK , vL,K, L) and we obtain :

∂Fν(v)

∂t
+ Jν(µ)(

�
+ Eν(µ))

∂Fν(v)

∂ν
(4.16)

+Jν(µ)∇τ · Fτ (v) +

nd−1∑

i=1

Jν(µ)Cτi(µ)
∂v

∂τi
= Jν(µ)S(µ) .
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Now integrating this last equation on K ∩ L leads to the approximate convection equation for the flux FK,L,
defined in (2.62) :

∂FK,L
∂t

+ Jν(µ)(
�

+ Eν(µ))
∂FK,L
∂ν

= area(K ∩ L)Jν(µ)S(µ) . (4.17)

Indeed dσ = dτ1 . . . dτnd−1 and the differential terms in the second line of equation (4.16) are exact derivatives
with respect to the τi, hence they only contribute, after integration onK∩L, to terms at the boundary ofK∩L.
Since the present finite volume discretization method understands that exchanges between the volumes occur
through edges, terms which involves edges boundaries are neglected. Let us define the matrix :

Ãν(v) ≡ Jν(v)(
�

+ Eν(v)) = Jν(v) + Jν(v)Cν(v)Jν(v)−1 , (4.18)

we see from equation (4.17) that the normal flux is convected, in first approximation, by the matrix Ãν(µ).
This fact leads to the choice (4.11).

4.1.2 Discretization of the nonconservative product

Our goal now is to approximate the integral (4.7) which involves the non conservative products. Let us note
ν = νK,L and µ = µ(vK , vL,K, L). We write successively :

∫

K

nd∑

j=1

Cj(v)
∂v

∂xj
dx =

∫

K

nd∑

j=1

Cj(v)
∂(v − vK)

∂xj
dx ,

≈
nd∑

j=1

Cj(vK)

∫

K

∂(v − vK)

∂xj
dx ,

≈
nd∑

j=1

Cj(vK)

∫

∂K

νj(v(σ, t)− vK) dσ ,

and we decompose the last integral into a sum :

∫

K

nd∑

j=1

Cj(v)
∂v

∂xj
dx ≈

∑

L∈N (K)

(
nd∑

j=1

Cj(vK) · νj
)∫

K∩L
(v(σ, t)− vK) dσ . (4.19)

Then, on K ∩ L, we approximate :

v(σ, t)− vK ≈ Jν(µ)−1 (F (v(σ, t)) · ν − F (vK) · ν) (4.20)

so that, with EK,L ≡ Cν(vK)Jν(µ)−1,

∫

K

nd∑

j=1

Cj(v)
∂v

∂xj
dx ≈

∑

L∈N (K)

EK,L

∫

K∩L
(F (v(σ, t)) · ν − F (vK) · ν) dσ . (4.21)

Finally using the approximation of the conservative term described in the previous section, we arrive to the
following formula :

∫

K

nd∑

j=1

Cj(v)
∂v

∂xj
dx ≈

∑

L∈N (K)

area(K ∩ L)EK,L(Φ(vK , vL;K,L)− F (vK) · ν) . (4.22)

4.1.3 Space discretization : summary

Now we can discretize (4.5) as follows :

vol(K)
dvK
dt

(4.23)

+
∑

L∈N (K)

area(K ∩ L) (
�

+ EK,L)(Φ(vK , vL;K,L)− F (vK) · νK,L)

= vol(K)S(vK) .

with EK,L = CνK,L(vK)JνK,L(µ(vK , vL, K, L))−1
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4.2 Discretization of the boundary conditions
Let us study the extension of our method and its comparison with the Riemann invariant based technique.

4.2.1 Extension of our method

Exactly as for the conservative case, we have to find the numerical flux Φ(vK ,K, ∂Ω) that approximates∫
K∩∂Ω

F (v(σ, t)) · νK dσ. Here the linearization around the state v still reads (3.3) but this time the advection
matrix AνK is :

AνK ≡ JνK (v) + Cν(v) . (4.24)

As in the conservative case, there are two different situations. The first one (the non characteristic case) refers
to the case where the matrix AνK is invertible, while the second one refers to the complementary case.

The non characteristic case The eigenvalues λk(v, νK) of AνK are :

λ1(v, νK) ≤ λ2(v, νK) ≤ . . . ≤ λχ(v, νK) < 0 < λχ+1(v, νK) . . . ≤ λm(v, νK) .

and like in the conservative case, we have to discuss according to the value of χ. There is no change for the
cases χ = 0 and χ = m. In the case 1 ≤ χ ≤ m − 1, the discussion is exactly that of Section 3.1.3. There is
only one difference, we take for hk(v) :

hk(v) ≡ l̃k(v, νK) · (F (v) · νK)− l̃k(v, νK) · (F (vK) · νK) , k = χ+ 1, . . . ,m , (4.25)

where this time l̃k(v, ν) denotes a left eigenvector of Ãν(v).

The characteristic case Here we label the eigenvalues of the matrix AνK as follows :

λ1(v, νK) ≤ λ2(v, νK) ≤ . . . ≤ λχ(v, νK) < 0λχ+n0+1(v, νK) . . . ≤ λm(v, νK) ,
λχ+1(v, νK) = . . . = λχ+n0(v, νK) = 0 .

Here n0 ≥ 1 denotes the dimension of the kernel of AνK . There is no change for the case χ = 0 and the case
χ = m − n0. In the case 1 ≤ χ ≤ m − n0 − 1, the discussion is exactly that of Section 3.2.3. There is only
one difference, we take again for the hk(v)’s the functions given by (4.25).

4.2.2 The incomplete Riemann invariant technique

Let us sum up the argument we developed for the conservative case in Section 3.3.3 for the case χ = m − 1
and let us consider at each interface the normal equation that reads :

∂v

∂t
+
∂f(v)

∂x
+ C(v)

∂v

∂x
= S(v) . (4.26)

We denote by J(v) the Jacobian matrix ∂f(v)
∂v

and byA(v) = J(v)+C(v) and Ã(v) = J(v)+J(v)C(v)J−1(v).
In the non-conservative case, the ”incomplete” Riemann problem method should consist in finding a state v sat-
isfying the m− 1 physical boundary conditions :

gk(v) = 0 , k = 1, . . . ,m− 1 , (4.27)

and m − 2 intermediate states µ1, . . . , µm−2 such that v is connected to µ1 through a 1-simple wave, µ1 is
connected to µ2 through a 2-simple wave, . . . , µm−2 is connected to v through a (m−1)-simple wave i.e. such
that with µ0 ≡ v and µm−1 ≡ v :

W `
k(µ`−1) = W `

k(µ`) , k = 1, . . . ,m− 1 , ` = 1, . . . ,m− 1 . (4.28)

where {W `
k}m−1
k=1 are the m− 1 independent `-pseudo Riemann invariants, that therefore satisfy :

r`(v) · ∇W `
k(v) = 0 . (4.29)

Here r`(v) denotes a right eigenvector of A(v). The method we propose replaces the system (4.28) by the
single equation :

l̃m(v) · f(v) = l̃m(v) · f(v) . (4.30)

where l̃k(v) denotes a left eigenvector of Ã(v) .
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Theorem 4 holds true with

Eε =
{
v ∈ G/ ||v − v|| ≤ ε and l̃m(v) · f(v) = l̃m(v) · f(v)

}
, (4.31)

since if we take v = v +
∑m
i=1 αiri(v) and if we write the Taylor expansion :

f(v) = f(v) + J(v)(v − v) +

∫ 1

0

(1− θ)∂J
∂v

(θv + (1− θ)v)(v − v, v − v)dθ ,

and then by taking the product scalar with l̃m(v), we get

l̃m(v) · f(v) = l̃m(v) · f(v) + αm + l̃m(v) ·
∫ 1

0

(1− θ)∂J
∂v

(θv + (1− θ)v)(v − v, v − v)dθ .

since l̃(v) = tJ−1(v)l(v). We now see that (4.30) reads as :

αm + g̃(α1, . . . , αm) = 0 . (4.32)

5 Wave equations
In this Section, we discuss how the present boundary conditions treatment applies in the cases of Example 1
namely the second order linear wave and Example 2 namely Maxwell’s equations. These two situations corre-
spond to a linear hyperbolic system of conservation laws where we observe that, for nd ≥ 2, we always have
a zero eigenvalue. It means that the boundary is always characteristic and the general Theorem 1 cannot be
applied. Nevertheless as it has been noticed in Section 3.2, we are going to be able to find in each case a unique
normal flux at the boundary by solving directly the system of equations (3.9) and (3.13). From physical point
of view, the zero eigenvalues corresponds to crawling (or surface) waves that can live on the boundary.
Let us recall that K is a control volume that meets ∂Ω, νK is the unit external normal and v denotes vK

5.1 The multidimensional wave equation
For this problem, the number of unknowns is equal to nd+ 1 and the second order equation reads as

∂2u

∂t2
− c24u = 0 . (5.1)

According to the definition of the eigenvalues (2.26), nd − 1 eigenvalues are equal to 0 ; the boundary is
characteristic and the hypothesis of Theorem 1 does not hold. But since one eigenvalue, namely λnd+1(νK) =
c is positive, we know that one information comes from inside Ω and in order to determine the normal flux
F (v) · ν at the boundary, if we follow our strategy, we have to impose (3.13) which reads :

lnd+1(νK) · (F (v) · νK) = lnd+1(νK) · (F (vK) · νK) , (5.2)

that is, using (2.5) and (2.27),

c√
2

(1, νK) · (v] · νK , uνK) =
c√
2

(1, νK) · (v] · νK , uνK), (5.3)

ie
v] · νK + u = v] · νK + u . (5.4)

Remark 11 This condition corresponds to the conservation of a Riemann invariant across the boundary for
the first order system (2.3)-(2.4), see Section 3.3.

Remark 12 Here, it is much more simple to try to find the normal flux at the boundary that is (v] · νK , uνK)
than the variable (v], u).

Remark 13 Let us note that for all v and vK , we have

lk(νK) · (F (v) · νK − F (vK) · νK) = 0 , k = 2, . . . , nd. (5.5)

From these relations and from (5.2), we can write

F (v) · νK =

nd+1∑

k=1

lk(νK) · (F (v) · νK)rk(νK) ,

= F (v) · νK + l1(νK) · (F (v) · νK − F (v) · νK)r1(νK),
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and F (v) · νK can be seen as a perturbation of F (v) · νK
F (v) · νK = F (v) · νK + ε r1(νK) ,

with
ε =

c√
2

(v] · νK − u− v] · νK + u) (5.6)

and from (5.4)
ε ≡ c

√
2(u− u) ≡ c

√
2(v] · νK − v] · νK).

It remains to find one equation linearly independent from equation (5.4) : let say g1(v) = 0. A great range
of boundary conditions can be considered, let us focus on the most usual ones that is Dirichlet, Neumann and
Robin conditions.

5.1.1 The Dirichlet case

Here this condition g1(v) = 0 reads
u = ugiven , on ΓD , (5.7)

where ΓD is the part of ∂Ω on which the function u is given. Equation (5.4) leads then to

v] · νK = v] · νK + u− ugiven , (5.8)

so that ε = c
√

2(u− ugiven) and the normal flux at the boundary is explicitly determined by :

F (v) · νK = F (v) · νK + c(u− ugiven)(1,−νK) . (5.9)

5.1.2 The Neumann case

Here this condition g1(v) = 0 reads

∂u

∂ν
≡ νK · ∇u = 0 , on ΓN , (5.10)

where ΓN is the part of ∂Ω on which the Neumann condition is imposed. We observe that according to (2.4),
this condition is equivalent to

v] · νK = v0
] · νK . (5.11)

But according to (5.4), it gives again ε explicitly : ε = −c
√

2(v] · νK − v0
] · νK). Hence finally we have the

following normal flux at the boundary

F (v) · νK = F (v) · νK − c(v] · νK − v0
] · νK)(1,−νK) . (5.12)

5.1.3 The Robin case

The complementary condition reads
∂u

∂ν
+ γu = 0 , on ΓR , (5.13)

where ΓR is the part of ∂Ω on which the Robin condition is imposed and γ is a given parameter. Following the
same lines as in the previous cases, we arrive to the following differential equation :

νK · ∂v]
∂t

= γcu . (5.14)

Using equation (5.4), we deduce that

∂

∂t

(
e−γctv] · νK

)
= γc(u+ v] · νK)e−γct . (5.15)

Integration of this differential equation leads then to

v] · νK = v0
] · νK − γc

∫ t

0

(u+ v] · νK)eγc(t−s)ds . (5.16)

But also, (5.15) can be approximatively integrated between tn−1 and tn to lead to (assuming u and v] · νK
independent of time, for instance u = un−1

K and v] · νK = vn−1
],K · νK )

vn] · νK = vn−1
] · νK + (u+ v] · νK)(1− eγc(tn−tn−1)) . (5.17)

But according to (5.6) this gives ε and hence finally we have the following normal flux at the boundary

F (v) · νK = F (v) · νK − c
(
v] · νKeγc(tn−tn−1) − vn−1

] · νK − u(1− eγc(tn−tn−1))
)

(1,−νK) .
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5.2 Maxwell’s equations
Recall that this system of equations reads as (m = 2nd)

∂D

∂t
− curlH = 0 , (5.18)

∂B

∂t
+ curlE = 0 , (5.19)

with constitutive equations D = εE and B = µH .
According to (2.29), and with the notations of Section 3, we are in the case χ = nd − 1. Therefore we need
nd− 1 scalar information coming from outside of Ω. The nd+ 1 supplementary conditions (3.13) amounts to
say that there exist εj ∈ R for j = 1, . . . , nd− 1 such that

F (v) · νK = F (v) · νK +

nd−1∑

j=1

εj rj(νK) , (5.20)

that is with (2.30)

F (v) · νK = F (v) · νK + (Π,−νK ∧Π

cε
) , (5.21)

where Π is an arbitrary vector in Rnd orthogonal to νK . Hence in order to find the normal flux on the boundary,
we have to find the vector Π which depends on nd − 1 independent variables and will be determined by the
same number of physical boundary conditions. There are mainly 3 types of such conditions that we study now.

5.2.1 Wall conditions

Also known as obstacle conditions, they can be (at least) of two nature : the case of a perfectly conducting
surface and the case of a perfectly reflecting surface.

Perfectly conducting surface. In this case, the tangent part of the electric field E is given

νK ∧D = νK ∧Dgiven . (5.22)

Using (5.21) we find Π explicitly and then we have the following normal flux at the boundary

F (v) · νK = F (v) · νK

+

(
cνK ∧ (νK ∧ (D −Dgiven)),

νK ∧ (Dgiven −D)

ε

)
.

(5.23)

Actually, another way of considering a perfectly conducting surface might consist in saying that the whole field
(D,B) is given outside of Ω and in using the characteristics that enter the domain in order to find the normal
flux at the boundary. These characteristics correspond to the negative eigenvalues in (2.29) and therefore,
consistently with (3.13), we impose :

lk(νK) · (F (v) · νK) = lk(νK) · (F (vgiven) · νK) , k = 1, . . . , nd− 1 . (5.24)

This gives then automatically the normal flux through the formula

F (v) · νK =

nd−1∑

k=1

lk(νK) · (F (vgiven) · νK)rk(νK)

+
2nd∑

k=nd

lk(νK) · (F (v) · νK)rk(νK) .

(5.25)

In general, formulas (5.23) and (5.25) do not lead to the same normal flux on the boundary since (5.23) does
not involve Bgiven while (5.25) does. Depending on the physical situation one should decide between the two
numerical boundary conditions.
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Perfectly reflecting surface. On a perfectly reflecting surface, one can either impose that the tangent part
of the electric field E vanishes

νK ∧D = 0 , (5.26)

or that the whole field (D,B) vanishes in the bulk outside of Ω. This last condition corresponds to formula
(5.24) with vgiven = 0 and according to (5.25) leads to

F (v) · νK =
2nd∑

k=nd

lk(νK) · (F (v) · νK)rk(νK) . (5.27)

On the other hand, according to (5.23), condition (5.26) leads to the following normal flux

F (v) · νK = F (v) · νK +

(
cνK ∧ (νK ∧D),−νK ∧D

ε

)
. (5.28)

5.2.2 Absorbing boundary conditions

The first order Silver-Müller absorbing condition reads as :

νK ∧D = −
√
ε

µ
νK ∧ (νK ∧B) . (5.29)

Again this allows ones to find Π in (5.21) and leads to the following normal flux at the boundary

F (v) · νK = F (v) · νK+

c

2

(√
ε

µ
νK ∧B − νK ∧ (νK ∧D),

1

cε

(
νK ∧D +

√
ε

µ
νK ∧ (νK ∧B)

))
.

(5.30)

6 The Euler equations for inviscid fluids
In this Section, we are going to discuss in details the boundary conditions associated with the multidimensional
Euler equations for inviscid fluids (2.17) to (2.19). Let us recall that the number of unknowns m is equal to
nd + 2, K is a control volume that meets ∂Ω, νK is the unit external normal and v denotes vK . Let us notice
that for ν a given unit vector, we have the formula (see (2.20)) :

F (v) · ν = (ρ(u · ν), ρ(u · ν)u+ pν, ρH(u · ν)) . (6.1)

6.1 Wall conditions
On a wall, the fluid slips, it means that its normal velocity u ·νK is equal to 0. Hence the normal flux F (v) ·νK
is equal to

F (v) · νK = (0, pνK , 0).

Therefore, to determine this flux, we only have to find the unknown p.

Remark 14 Here it is much more simple and much more physically relevant to try to find the normal flux on
the boundary rather than the variable v = (ρ, ρu, ρE).

According to the value of the eigenvalues (2.50), only one eigenvalue, namely λnd+2(v, νK) = c, is positive.
Only one information comes from inside Ω and if we follow the strategy we have described in Section 3.2, we
have to impose (3.23) which reads :

lnd+2(v, νK) · (0, pνK , 0) = lnd+2(v, νK) · (F (v) · νK) . (6.2)

Hence pressure p is automatically given by the explicit formula

p =
lnd+2(v, νK) · (F (v) · νK)

lnd+2(v, νK) · (0, νK , 0)
, (6.3)

that is (where underlined quantities correspond to v) :

p = p+
ρc2(u · νK)

c− k(u · νK)
. (6.4)

In other words we take
Φ(vK , K, ∂Ω) = (0, pνK , 0) , (6.5)

where p is given by formula (6.4) with v = vK .
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Remark 15 For a polytropic gas, for which the equation of state is p = (γ − 1)ρe where γ > 1 is a given
constant, we have k = γ − 1 and c2 = γp

ρ
. Then formula (6.4) reads as

p = p

(
1 +

γu · νK
c− (γ − 1)u · νK

)
. (6.6)

6.2 Fluid boundary conditions
Let us now turn to the case where on a part of the boundary the fluid goes inside or outside the domain, that is
u · νK 6= 0. We are going to discuss according to the sign of this normal velocity.

6.2.1 The case of an outlet : u · νK > 0

The supersonic case. This is the case where u · νK > c. Here χ = 0, so we have all the information that
comes from inside of Ω and according to Section 3.1.1 we take :

Φ(vK ,K, ∂Ω) = F (vK) · νK . (6.7)

The subsonic case. This is the case where 0 < u · νK < c. We have nd + 1 information that come from
inside of Ω and χ = 1. Therefore, we have to prescribe one boundary condition5. Let us write :

g1(v) = 0 , (6.8)

the given relation at the boundary. Condition (3.15) reads here

∆ ≡ ∂g1

∂v1
(v) +

nd∑

i=1

(ui − cνiK)
∂g1

∂vi+1
(v) + (H − u · νKc) ∂g1

∂vnd+2
(v) 6= 0 . (6.9)

The given pressure case. We consider the usual case where the given physical boundary condition at a subsonic
outlet consist in imposing a given pressure. Let us denote pOUT this pressure, then the condition (6.8) reads
g1(v) ≡ p − pOUT = 0. In order to check condition (6.9) in this case, we are going to compute the gradient
∇vp|v=v . Here we have

ρ = v1 , (6.10)

e =
vnd+2

v1
− 1

2

∑nd+1
i=2 v2

i

v2
1

, (6.11)

so that we find that
∂p

∂v1
=

(
∂p

∂ρ

)

e

− e− 1
2
u2

ρ

(
∂p

∂e

)

ρ

, (6.12)

∂p

∂vi
= −ui−1

ρ

(
∂p

∂e

)

ρ

, i = 2, . . . , nd+ 1 , (6.13)

∂p

∂vnd+2
=

1

ρ

(
∂p

∂e

)

ρ

. (6.14)

If we substitute these expressions in (6.9), we obtain

∆ =

(
∂p

∂ρ

)

e|v=v

+
p

ρ2

(
∂p

∂e

)

ρ|v=v

. (6.15)

On the other hand, if we write that
Tds = de− p

ρ2
dρ , (6.16)

we obtain that (see (2.49)) :

dp = c2dρ+ kρTds =

[(
∂p

∂ρ

)

e

+
p

ρ2

(
∂p

∂e

)

ρ

]
dρ+ T

(
∂p

∂e

)

ρ

ds , (6.17)

so that we simply have ∆ = c2, a positive number. Hence we have proved the following result :

Proposition 2 In the case of a subsonic outlet, we can only prescribe one condition g1(v) = 0. Moreover this
condition is suitable if and only if (6.9) is satisfied. In particular one can impose the pressure p.

5In most cases it is the pressure that is given at a subsonic outlet, see hereafter.
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6.2.2 The case of an inlet : u · νK < 0

The supersonic case. This is the case where u · νK < −c. Then χ = nd+ 2 so that we have all the
information that comes from outside of Ω and according to Section 3.1.2 we have to prescribe the flux on the
boundary :

Φ(vK ,K, ∂Ω) = Φgiven . (6.18)

The subsonic case. This is the case where −c < u · νK < 0. Here χ = nd+ 1, we need one information
that comes from inside of Ω and we have to prescribe nd+ 1 boundary conditions.
In general one prescribes the direction of the flow on the boundary i.e. u = µα where α is a unit vector which
makes an obtuse angle with νK with α · νK < 0 and where µ is a positive number such that −α · νK µ < c.
Giving α amounts to give nd− 1 conditions and therefore it remains to prescribe 2 boundary conditions.

Let us first discuss the important case where the flow is normal to the boundary i.e. α = −νK . In this case,
0 < µ < c and

F (v) · νK = −(ρµ, (ρµ2 + p)νK , ρµH) . (6.19)

Remark 16 We recognize in this formula the flux that occurs in the one dimensional case, see (10.3).

In order to find this normal flux, according to (3.13), we first take

lnd+2(v, νK) · (F (v) · νK) = lnd+2(v, νK) · (F (v) · νK) , (6.20)

since one information is coming from inside Ω. Actually we propose in this case to slightly modify (6.20) as
follows

lnd+2(v∗, νK) · (F (v) · νK) = lnd+2(v∗, νK) · (F (v) · νK) , (6.21)

where v∗ = (ρ, ρ|u|νK , ρE), that is we change v in order that its velocity becomes also normal to the boundary.
Let us write now explicitly (6.21) :

ρµ(c2 + k|u|2 − |u|c+ k(H −H)) + (ρµ2 + p)(c− k|u|) = (6.22)

lnd+2(v∗, νK) · (F (v) · νK) .

Then we write the two supplementary boundary conditions as

g1(v) = 0 , g2(v) = 0 . (6.23)

According to Theorem 1, the local solvability of (6.22) and (6.23) is reduced to the condition :

det1≤k,l≤2

(
m∑

i=1

rik(v∗, νK)
∂gl
∂vi

(v∗)

)
6= 0 . (6.24)

But now since we have brought back the nd dimensional problem to a 1 dimensional one, we can use the results
and the methods of Section 10.1. See in particular Propositions 4 to 6.

It remains to address the general case where the direction of the flow, although entering into Ω, is not normal
to its boundary. In this case, the normal flux reads as follows :

F (v) · νK = (ρµα · νK , ρµ2α · νKα+ pνK , ρµHα · νK) . (6.25)

Here again, in order to find this normal flux, according to (3.13), we first take

lnd+2(v, νK) · (F (v) · νK) = lnd+2(v, νK) · (F (v) · νK) , (6.26)

as an information coming from inside Ω. Then we write the two supplementary boundary conditions as

g1(v) = 0 , g2(v) = 0 . (6.27)

According to Theorem 1, the local solvability of (6.26) and (6.27) is reduced to the condition :

det1≤k,l≤2

(
m∑

i=1

rik(v, νK)
∂gl
∂vi

(v)

)
6= 0 . (6.28)
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7 A two fluid model
As already stressed in Section 4, our motivation comes from models arising in two phase fluid computational
fluid dynamics. More precisely, we address the so called averaged models which can predict kinematic and
thermal non-equilibrated flows. (Boure and Delhaye [6], Drew and Lahey [18], Ishii [34], Ransom [44]) These
models are derived by the application of an average process (with respect to time or space or even a statistical
averaging) to the classical compressible Navier-Stokes equations in each fluid or phase, separated by interfaces.

7.1 A 6 equations model
This leads to a system of 6 balance equations that reads as follows (k = 1 or 2) :

∂(αkρk)

∂t
+∇ · (αkρkuk) = Γk, (7.1)

∂(αkρkuk)

∂t
+∇ · (αk(ρkuk ⊗ uk + p

�
))− p∇αk = αkρkg +Mk + uk,iΓk, (7.2)

∂(αkρkEk)

∂t
+∇ · (αkρkHkuk) + p

∂αk
∂t

= (αkρkg +Mk) · uk +HkΓk +Qk, (7.3)

This model is simplified in the sense that we have omitted in its right hand side the contributions which are
related to dissipative phenomena. System (7.1)-(7.3) will be termed as the basic model.
Let us now describe the physical meaning of each variables : αi is the volume fraction of the fluid i, ρi is the
density of the fluid i, ui denotes the velocity of the phase i and p is the thermodynamic pressure. Denoting by
ei the specific internal energy of the phase i, we have set Ei = ei+ 1

2
|u|2 : the total specific energy of the fluid

i and Hi = Ei+ p
ρi

the total specific enthalpy of the fluid i (we shall also use the notation hi ≡ ei + p
ρi

for the
specific enthalpy of the fluid i), the Γk’s denote mass transfers term with Γ1 + Γ2 = 0, the Mk’s momentum
transfers Qk’s heat transfers and finally the uk,i are interfacial velocities. Gravity is denoted by g.

We have the relation α1 + α2 = 1 and in order to close the system (7.1)-(7.3), we have to write two equations
of state :

Fi(p, ρi, ei) = 0 , i = 1, 2 . (7.4)

7.2 An isentropic model
An isentropic version of this system of 6 equations can be obtained as follows. Introducing the specific entropy
of the fluid i, si, defined by :

Tidsi = dei − p

ρ2
i

dρi , (7.5)

and assuming that there is no production of entropy into the shocks, equation (7.3) leads to :

∂(αkρksk)

∂t
+∇ · (αkρkskuk) =

Qk
Tk

+

(
uk − uk,i

Tk
uk + sk

)
Γk , (7.6)

In the case of absence of mass transfers between the two fluids (Γk ≡ 0) and of heat transfers (Qk ≡ 0), these
equations read as

∂(αkρksk)

∂t
+∇ · (αkρkskuk) = 0 . (7.7)

In view of (7.1) and (7.7), we can have solutions with constant entropies i.e. with s1 and s2 constant. The
system then reduces to equations (7.1) and (7.2) and the equations of states (7.4) are replaced by isentropic
ones :

Gi(p, ρi) = 0 , i = 1, 2 . (7.8)

For the sake of simplicity in the exposition, let us concentrate on the following simplified system :

∂(αkρk)

∂t
+∇ · (αkρkuk) = 0 , (7.9)

∂(αkρkuk)

∂t
+∇ · (αk(ρkuk ⊗ uk + p

�
))− p∇αk = αkρkg +Mk , (7.10)

with the two equations of states (EOS) given by (7.8) and where we only take into account interfacial pressure
in the momentum transfer. Hence the forces Mk which satisfy M1 +M2 = 0 reads

Mk = −(p− pinterface)∇αk , (7.11)
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For instance, Bestion [5] has proposed to take :

(p− pinterface) ≡ δ α1α2ρ1ρ2

α1ρ2 + α2ρ1
(u1 − u2)2 . (7.12)

The order of magnitude of the parameter δ is about 1 and its role is to allow the system (7.9)-(7.10) to be
hyperbolic.

This system has already the non conservative form (4.4) provided we take (here nd = 3 and m = 8) :

v = (α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2), uk ∈ R3 , (7.13)

F (v) · ν = (α1ρ1(u1 · ν), α1ρ1(u1 · ν)u1 + α1(p− π)ν,

α2ρ2(u2 · ν), α2ρ2(u2 · ν)u2 + α2(p− π)ν) , (7.14)

3∑

j=1

Cj(v)
∂v

∂xj
= (0,−Γ∇α1, 0,−Γ∇α2) , (7.15)

S(v) = (0, α1ρ1g, 0, α2ρ2g) , (7.16)

where g denotes the gravity, π = π(t) is a time-dependent function chosen in order that the Jacobian matrix
Jν(v), see (4.13), is invertible and finally we have denoted :

Γ ≡ p− π − δ α1α2ρ1ρ2

α1ρ2 + α2ρ1
(u1 − u2)2 . (7.17)

Remark 17 The relation (7.15) does not give explicitly the matrices Cj(v). In order to obtain these quantities,
we have to compute the derivatives ∂αk

∂vj
. This is done by using the EOS (7.8) as follows. The system allowing

to compute the αk and p from the components of v is

α1 + α2 = 1 , G1(p,
v1

α1
) = 0 , G2(p,

v5

α2
) = 0 . (7.18)

The differentiation of this system with respect to the vk’s will then produce a linear system for the ∂αk
∂vj

.

For example, when one considers the mixture of an incompressible liquid (like water) and of a compressible
gas (like air), a simple couple of EOS is p = Aργ1 , ρ2 =constant, where γ is a constant larger than 1. In this
case the previous system can be solved explicitly :

α1 =
ρ2 − v5

ρ2
, α2 =

v5

ρ2
, p = A

(
v1ρ2

ρ2 − v5

)γ
. (7.19)

In order to apply the characteristic boundary conditions (4.25), we have to construct the Jacobian matrix Jν
which reads as :

Jν(v) = Aν(v)− Cν(v) , (7.20)

where Aν(v) =




0 ν 0 0

−u1 · νu1 + α1p
(1)ν u1 ⊗ ν + u1 · ν

�
α1p

(5)ν 0
0 0 0 ν

α2p
(1)ν 0 −u2 · νu2 + α2p

(5)ν u2 ⊗ ν + u2 · ν
�


 ,

Cν(v) = −Γ




0 0 0 0

α
(1)
1 ν 0 α

(5)
1 ν 0

0 0 0 0

α
(1)
2 ν 0 α

(5)
2 ν 0


 , (7.21)

and we have denoted by q(`) ≡ ∂q
∂v`

.
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7.3 The boundary condition treatment

7.3.1 Wall conditions

Let us assume that K is a control volume that meets ∂Ω, νK is the unit external normal and v denotes vK . On
a wall, the two phase slip, it means that their normal velocity u1 · νK and u2 · νK are equal to 0. Hence the
normal flux F (v) · νK is equal to

F (v) · νK = (0, α1(p− π)νK , 0, (1− α1)(p− π)νK , 0).

Therefore, to determine this flux, on one hand we only have to find the unknowns p and α1. On the other hand,
according the wave structure obtained by Cortes [10] with a density perturbation method, two eigenvalues
namely λm(v, νK), λm−1(v, νK) are positive. Then two information come from inside Ω and if we follow our
strategy, we have to impose :

lm(v, νK) · (0, α1(p− π)νK , 0, (1− α1)(p− π)νK , 0) = lm(v, νK) · (F (v) · νK)

lm−1(v, νK) · (0, α1(p− π)νK , 0, (1− α1)(p− π)νK , 0) = lm−1(v, νK) · (F (v) · νK).

This system can be solved and gives explicit formulas for the pressure p and the void fraction α1.

7.3.2 A numerical illustration

Let us give now a numerical illustration based on what is known as Ransom faucet flow [44] which is a nu-
merical benchmark. This test case is well referenced and analytically simple. It has also the great interest that
it contains some of the important features in the field at least from the numerical point of view. Moreover
analytical solution is available for comparison, [44]. The solution mainly consists of a shock wave that travels
under the effect of gravity.

The continuous model considered in dimension 1 corresponds to the system (7.1)-(7.3) without mass transfer :

∂(α1ρ1)

∂t
+
∂(α1ρ1u1)

∂x
= 0, (7.22)

∂(α2ρ2)

∂t
+
∂(α2ρ2u2)

∂x
= 0, (7.23)

∂(α1ρ1u1)

∂t
+
∂(α1(ρ1u1 ⊗ u1 + p

�
))

∂x
− p∂α1

∂x
= α1ρ1g +M1, (7.24)

∂(α2ρ2u2)

∂t
+
∂(α2(ρ2u2 ⊗ u2 + p

�
))

∂x
− p∂α2

∂x
= α2ρ2g +M2, (7.25)

∂(α1ρ1E1)

∂t
+
∂(α1ρ1H1u1)

∂x
+ p

∂α1

∂t
= (α1ρ1g +M1) · u1, (7.26)

∂(α2ρ2E2)

∂t
+
∂(α2ρ2H2u2)

∂x
+ p

∂α2

∂t
= (α2ρ2g +M2) · u2. (7.27)

The EOS corresponds to the case where phase 1 is a perfect polytropic gas i.e. p = (γ − 1)ρ1e1 with γ = 1.4
and where phase 2 is incompressible i.e. ρ2 is constant.

This model is of the form (4.1) and let us explain now how to recast it under the form (4.4). We start with the
fact that since ρ2 is constant, ∂α2

∂t
= 1

ρ 2

∂v2
∂t

. But now according to (7.23), ∂v2
∂t

= − ∂v4
∂x

, so that finally :

∂α1

∂t
=

1

ρ 2

∂v4

∂x
,
∂α2

∂t
= −1

ρ 2

∂v4

∂x
. (7.28)

Hence the two terms in (7.26) and (7.27) which contributes to D(v) ∂v
∂t

in (4.1) have been converted into terms
which enters in C(v) ∂v

∂x
in (4.4). Full details are given in Ghidaglia et al. [27] from which the numerical result

below is taken.

All the numerical values are expressed in the International System of Units. The equations are posed for x
between 0 and 12 and the gravity is taken as g = 10. The boundary conditions are as follows :

α1(0, t) = 0.2 , u1(0, t) = 0 , u2(0, t) = 10 , (7.29)

h2(0, t) = 209 280 , (7.30)

p(12, t) = 105 , when u1(12, t) ≥ 0 , (7.31)

p(12, t) = 105 , h1(12, t) = 324 594 , when u1(12, t) < 0 , (7.32)

40



On boundary conditions in the FV framework Report CMLA, Ens de Cachan, 2003

h2 in (7.30) corresponds to water at a temperature of 323.15 K and atmospheric pressure, while h1 in (7.32)
corresponds to air in the same conditions. Note that the hi’s denote the specific enthalpies (hk ≡ ek + p

ρ k
) of

each fluid and should not be confused with the boundary conditions (3.10). Actually they belong to the set of
physical boundary conditions (3.9).
We take δ = 1.01 in the interfacial pressure term (7.11)-(7.12). This makes the system under consideration
hyperbolic and as shown by Figure 3, that displays the exact solution (shock front) and the computed solutions
with 768 and 1536 cells, the numerical solution is very accurate and the boundary conditions are very well
captured. The higher the number of cells is, sharper is the calculated front.

In order to make a link between the physical boundary conditions (7.29) to (7.32), and our method for numeri-
cally implementing them, we discuss the eigenvalues of the system under consideration (full details are given in
[27]). In one dimension, the system has 6 real eigenvalues. Two of them are u1 and u2 and are associated to the
two global Riemann invariants s1 and s2 (the specific entropies). The 4 other eigenvalues are not analytically
simple in terms of the physical variables. Nevertheless they can be written as µ − c, µ1, µ2 and µ + c where
µ + µ1+µ2

2
= u1 + u2 and indeed µ, µ1 and µ2 are of the same order than u1 and u2 while c is of the order

of the speed of sound in the first phase (which here is about 300 m/s). A careful study of the behavior of these
eigenvalues as various parameters vary is offered in [54] and [53] and we refer the interested reader to these
papers for that matter. As it is observed numerically, in the test case considered here, 3 of these 4 eigenvalues
are positive while one is negative.
So at the inlet (x = 0) we always have 4 eigenvalues which are positive, one which is zero and one which is
negative. Hence we need according to our method 4 physical boundary conditions : (7.29)-(7.30).
At the outlet (x = L) there are two case during the transients.

• Either u1 is non negative and again we have 5 eigenvalues which are non negative and one which is
negative and then we need one boundary condition (observe that the normal at x = L is opposite to that
at x = 0) : (7.31).

• Or u1 is negative and now we have 4 eigenvalues which are non negative and two which are negative and
then we need two physical boundary conditions : (7.32).
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Figure 3: Exact solution, and computed ones with 768 and 1536 cells for the void fraction α1(x, t) at time
t = 0.563
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8 On the numerical solution to the nonlinear equations at the
boundary
We discuss in this Section a practical point of view for the implementation of the boundary condition treatment
we propose in Section 3. Let us note K a control volume that meets the boundary ∂Ω, νK the unit external
normal to K ∩ ∂Ω, χ the number of negative eigenvalues of the Jacobian AνK .
Let us recall that we propose to take for the numerical flux at the boundary the following form :

Φ(vnK , K, ∂Ω) = Φ . (8.1)

where Φ satisfies the following system :




gk(v) = 0 , k = 1, . . . , χ ,
lk(v, νK) · Φ = lk(v, νK) · (F (vnK) · νK) , k = χ+ 1, . . . ,m ,
Φ = F (v) · νK .

(8.2)

The system (8.2) is solved by some few iterations of the Newton-Raphson method.

Remark 18 In practice, system (8.2) is written in a parametric way. A more complete discussion is considered
in the remaining part of this Section.

In the following discussions, we suppose that : v = vnK .

8.1 The case χ = 1

This case corresponds in the context of example 2.1.5 to the subsonic outlet, so we present some practical tools
to solve the system (3.9)-(3.10). According to Proposition 2, there is only one physical boundary condition to
consider and the system (8.2) reads (Φ = F (v) · νK ) :

{
g1(v) = 0
lk(v, νK) · (F (v) · νK) = lk(v, νK) · (F (v) · νK), k = 2, . . . ,m.

(8.3)

Since

F (v) · νK =

nd+2∑

k=1

lk(v, νK) · (F (v) · νK)rk(v, νK) ,

= F (v) · νK + l1(v, νK) · (F (v) · νK − F (v) · νK)r1(v, νK),

the flux F (v) · νK can be seen as a “small” perturbation of F (v) · νK and system (8.3) is equivalent to the
parametric system : {

F (v) · νK = F (v) · νK + ε r1(v, νK)
ε ∈ R such that g1(v) = 0.

(8.4)

System (8.4) can be seen as a nonlinear system ofm+1 equations withm+1 unknowns (v, ε) which is solved
by the Newton-Raphson iterative scheme.

The Newton-Raphson method. Let us present the nonlinear equations in the general form :

F (X) = 0 (8.5)

The Newton-Raphson method is an iterative algorithm which start at an initial estimate X0 of a root X? and
for which the general iterative formula is :

J(Xn)(Xn+1 −Xn) = F (Xn)

where J(X) is the Jacobian matrix of F (X). Newton-Raphson algorithm’s is locally quadratically convergent :
only few iterations are necessary.
Now since the initial guess has to be chosen close to the exact solution, a good guess for the system (8.4)
consists in taking (v, ε) ≡ (v, 0). In practice, the evaluation of J(Xn)−1 can be complicated and costly (for
instance in the case of an equation of state for real gas in Example 2.1.5) and J(Xn) can be replaced by some
approximations : J(X0),... However convergence rate is reduced. See Stoer and Burlirsch [52] for a wider
discussion.
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Inviscid fluids. We now focus on the system of the Euler equations of gas dynamics. The physical boundary
condition can consist in prescribing the pressure. In this particular case, the problem (8.4) reads (the pressure p
is viewed as a function of state v) :

{
F (v) · νK = F (v) · νK + ε r1(v, νK)
ε ∈ R such that p = pout.

(8.6)

Let us denote F (v) · νK = (F 1, F , Fnd+2) and r1(v, νK) = (R1, R,Rnd+2) where (F ,R) ∈ Rnd × Rnd,
then we get : 


ρ(u · νK)
ρ(u · νK)u+ poutνK
ρH(u · νK)


 =




F 1

F

Fnd+2


+ ε




R1

R

Rnd+2


 . (8.7)

Using definition of the total enthalpy and introducing (Ω1, . . . ,Ωnd−1), an orthonormal basis of the hyperplane
orthogonal to νK , (8.7) is equivalent to :





ρ(u · νK) = F 1 + εR1,

(F 1 + εR1)u · νK + pout = F · νK + εR · νK ,
(F 1 + εR1)u · Ω1 = F · Ω1 + εR · Ω1 . . . ,
(F 1 + εR1)u · Ωnd−1 = F · Ωnd−1 + εR · Ωnd−1 ,

ρh(u · νK) + 1
2
u2(F 1 + εR1) = Fnd+2 + εRnd+2.

(8.8)

Since u2 = (u · νK)2 + (u · Ω1)2 + . . .+ (u · Ωnd−1)2, if ρ, h, ε satisfy (8.6) then they necessary satisfy the
system : 




ρ(F · νK + εR · νK − pout) = (F 1 + εR1)2

ρh(F · νK + εR · νK − pout) + 1
2

(
F · νK + εR · νK − pout)2+

(F · Ω1 + εR · Ω1)2 + . . .+ (F · Ωnd−1 + εR · Ωnd−1)2
}

=

(Fnd+2 + εRnd+2)(F 1 + εR1)).

If h is a function of ρ and p, then we get a nonlinear system of 2 equations where the unknowns are ρ and ε.
Moreover in the case of a polytropic gas, the specific enthalpy h is equal to γp

ρ(γ−1)
, and ε is solution of a

quadratic equation :

γpout
γ − 1

(F · νK + εR · νK − pout) +
1

2

{
(F · νK + εR · νK − pout)2+

(F · Ω1 + εR · Ω1)2 + . . .+ (F · Ωnd−1 + εR · Ωnd−1)2
}

=

(Fnd+2 + εRnd+2)(F 1 + εR1)).

(8.9)

Once ε is computed with a Newton-Raphson method, relation (8.4) gives the flux at the boundary.

8.2 The case χ = m− 1

In this case, system (8.2) consists in finding Φ such that :




gk(v) = 0 , k = 1, . . . ,m− 1 ,
lm(v, νK) · Φ = lm(v, νK) · (F (v) · νK) ,
Φ = F (v) · νK .

(8.10)

For the Euler equations of gas dynamics, it corresponds to the subsonic inlet case : see Section 6.2.2.

Inviscid fluids. Let us assume that the direction α (unit vector) of the flow is prescribed i.e. that velocity
writes : u = µαin where µ is a positive number such that −c < µαin · νK < 0. Therefore system (8.10)
reduces to the form (we note lnd+2(v, νK) = (L1, L, Lnd+2) with L ∈ Rnd and ν = νK ) :





g1(v) = 0 ,
g2(v) = 0 ,
L1ρµ(αin · ν) + ρµ2(αin · L)(αin · ν) + p(L · ν)

+ Lnd+2ρHµ(αin · ν) = lnd+2(v, ν) · (F (v) · ν)
Φ = F (v) · ν .

(8.11)

We now consider several examples of the numerical treatment at inlet boundary (see Section 12) corresponding
to the two functions g1 and g2. These examples yield to a nonlinear scalar equation. Once this equation is
solved, the state v of system (8.10) can be completely determined and furthermore the flux Φ.
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Thermodynamics variables :

When 2 thermodynamics variables are prescribed, from remark 20 all the other ones are determined.
Let us therefore denote ρin, pin, hin the prescribed density, pressure and specific enthalpy. Then the
problem (8.11) reduces to solve in µ the following nonlinear equation :

Lnd+2ρin(αin · ν)µ3 + ρin(αin · L)(αin · ν)µ2

+ (L1ρin(αin · ν) + Lnd+2ρinhin(αin · ν))µ
+ pin(L · ν) = lnd+2(v, ν) · (F (v) · ν) .

(8.12)

Internal energy and velocity :

We assume that g1(v) = e− ein and g2(v) = µ− µin. From ein and the equation of state, the pressure
p and the specific enthalpy h can be viewed as functions of ρ. This implies that ρ is solution of :

L1ρµin(αin · ν) + ρµ2
in(αin · L)(αin · ν) + p(ρ)(L · ν)

+ Lnd+2ρ(h(ρ) +
1

2
µ2
in)µin(αin · ν) = lnd+2(v, ν) · (F (v) · ν) .

(8.13)

Internal energy and mass flow :

We assume that g1(v) = e− ein and g2(v) = ρµ− (ρµ)in. As in the previous example, p and h can be
viewed as functions of ρ. This implies that ρ is solution of :

L1(ρµ)in(αin · ν) +
(ρµ)2

in

ρ
(αin · L)(αin · ν) + p(ρ)(L · ν)

+ Lnd+2(h(ρ) +
(ρµ)2

in

2ρ2
)(ρµ)in(αin · ν) = lnd+2(v, ν) · (F (v) · ν) .

(8.14)

Entropy and total enthalpy :

From the equation of state and from s = sin and h = Hin− 1
2
µ2, density ρ and pressure p can be viewed

as functions of µ. Then we obtain a nonlinear equation in µ :

L1ρ(µ)µ(αin · ν) + ρ(µ)µ2(αin · L)(αin · ν) + p(µ)(L · ν)

+ Lnd+2ρ(µ)Hinµ(αin · ν) = lnd+2(v, ν) · (F (v) · ν) .
(8.15)

9 Applications : A numerical comparison of boundary treat-
ments

9.1 Perfect gas dynamics : the two-dimensional sinus bump benchmark
To illustrate the efficiency of the discretization of the boundary conditions we discussed in Section 3, we
consider different treatments of the inlet and outlet boundaries for the two-dimensional flow of a perfect gas
in a channel with a thick sinus bump on the lower wall. This test was originally proposed at the 1979 GAMM
Workshop [45]. Let us define the geometry : the computational domain is the rectangle [0, 3] × [0, 1] with
a 10% high sinus curve located in the arc [0, 1]. Since the non stationary problem is concerned, an initial
condition has to be defined. A uniform one is computed on the computational mesh from the non dimensional
free stream variables and from the imposed “inlet” Mach number : M0. The free stream is defined from the
speed of sound (c0 = 1), the module of velocity (|u0| =M0), the pressure (p0 = 1), and the direction of the
flow (the unit vector α0 = (1, 0)). Internal energy, density and temperature are obtained from the equation of
state for a polytropic gas and from the Joule-Thompson relation. We get (R = 2/5 and γ = 7/5) :





T0 =
c20
γR

e0 =
R

γ − 1
T0

ρ0 =
p0

(γ − 1)e0

⇒





T0 =
1

γR

e0 =
1

γ(γ − 1)

ρ0 = γ

When the inlet Mach number is less than 0.6, the flow is subsonic in all the domain and the solution converge
to a stationary isentropic flow. Then three types of boundary conditions have to be considered : subsonic inlet,
subsonic outlet and wall conditions.
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In the present numerical experiments, we consider on the upper and lower wall the numerical flux described in
Section 6.1 :

Φ(v,K, ∂Ω) = (0,
lnd+2(v, ν) · (F (v) · ν)

lnd+2(v, ν) · (0, ν, 0)
ν, 0) .

In the two first Section, we describe two numerical treatments of the boundary conditions that are implemented
by first constructing a boundary face state Vb = (ρb, ρbub, ρbEb) and then by computing the VFFC flux at the
boundary from this state and the interior one, following definition 2 and 3.

9.1.1 The Riemann invariant boundary conditions : Rinv

We consider here boundary conditions treatment based on the Riemann invariants defined in Section 3.3 and
computed for the Euler Equations in Section 10. We refer to Hirsch [31] and reference therein, and Darmo-
fal [12]. For the subsonic inlet boundary, they read (since ν is the outer unit normal, there is a minus sign) :





−ub · ν +
2

γ − 1
cb = −u0 · ν +

2

γ − 1
c0

pb
ργb

=
p0

ργ0

−ub · ν − 2

γ − 1
cb = −u · ν − 2

γ − 1
c

αb = α0

(9.1)

where the subscript 0 correspond to the free stream variables. The first relation corresponds to the Riemann
invariant along the incoming characteristic associated to the eigenvalue u · ν − c. The second relation means
that the entropy is constant along the characteristic associated to u · ν. These two relations deal with physical
boundary conditions and they are estimated from the free stream state. The third relation which is associated
with a numerical boundary condition, is estimated from inside the domain and corresponds to the Riemann
invariant along the outcoming characteristic associated to the eigenvalue u · ν + c. The last relation on the
direction of the flow is the additional condition for the two-dimensional boundary implementation.
For the subsonic outlet boundary, the boundary state is obtained from :





ub · ν +
2

γ − 1
cb = u0 · ν +

2

γ − 1
c0

pb
ργb

=
p

ργ

ub · ν +
2

γ − 1
cb = u · ν +

2

γ − 1
c

ub · τ = u · τ

(9.2)

where τ is a normalized vector orthogonal to ν. The first relation comes from the incoming, negative charac-
teristic associated to the eigenvalue u · ν − c. The three others conditions are estimated from the interior since
they are associated to the positive eigenvalue, i.e. the outcoming characteristics.

9.1.2 The partial Riemann problem treatment of boundary conditions : PR QT

We consider in this section, the incomplete Riemann problem technique proposed by Dubois and LeFloch [20]
and described in Section 3.3.2.
For subsonic inflow, the state Vb is the unique state which belongs to the boundary “manifold” i.e. that respects
given boundary conditions and which can be connected to the interior state through two simple waves. Let’s
suppose that a direction of the flow α0, a mass flow Q0 and a temperature T0 are given then the resolution of
the boundary state can be conducted in the plane of normal velocity and pressure since from ρbub · ν = Q0 and
from definition of internal energy eb = R

γ−1
T0, the pressure pb = (γ − 1)ρbeb is expressed in terms of ub · ν

with the hyperbola that defines the boundary “manifold” on the normal velocity-pressure plane :

pb =
RT0Q0

ub · ν
(9.3)

The additional condition for the two-dimensional case is simply : αb = α0. Therefore, the boundary state
Vb which satisfies this hyperbola is connected to an intermediate state µ1 through a 2-simple wave and this
intermediate state is connected to the interior state v through a 1-simple wave. If the 1-wave is a 1-rarefaction

45



On boundary conditions in the FV framework Report CMLA, Ens de Cachan, 2003

wave, then the partial Riemann problem reduces to the solution of the following system :





u · ν +
2

γ − 1
c = u1 · ν +

2

γ − 1
c1

p

ργ
=
p1

ργ1
u1 · ν = ub · ν
p1 = pb

(9.4)

From this system, the normal component of velocity can be finally made explicit as solution of :

ub · ν = − 2
√
γ

γ − 1

(
RT0Q0

ub · ν

) γ−1
2γ

(
p

ργ

) 1
2γ

+ u · ν +
2

γ − 1
c (9.5)

In the case of a 1-shock wave, the partial Riemann problem reduces to :




u1 · ν − u · ν +

√
2

ρ((γ + 1)p1 + (γ − 1)p)
(p1 − p) = 0

u1 · ν = ub · ν
p1 = pb

(9.6)

and in consequence that ub · ν is solution of :

ub · ν − u · ν +

√√√√
2

ρ((γ + 1)
RT0Q0

ub · ν
+ (γ − 1)p)

(
RT0Q0

ub · ν
− p) = 0 (9.7)

Problems (9.5) and (9.7) are in practice solved with some few iterations of Newton.
For the outflow subsonic condition, the unique state associated to the prescribed pressure p0 and that can be
connected to the interior state by a 1-wave is exactly solved thanks to the relations :





pb = p0

pb
ργb

=
p

ργ

ub · ν +
2

γ − 1
cb = u · ν +

2

γ − 1
c

ub · τ = u · τ

(9.8)

in the case of a 1-rarefaction wave and thanks to :




pb = p0

pb
ργb

=
p

ργ

ub · ν = u · ν −
√

2

ρ((γ + 1)pb + (γ − 1)p)
(pb − p)

ub · τ = u · τ

(9.9)

in the case of a 1-shock wave.

9.1.3 The mirror treatment : Mi QT

The last approach to impose boundary conditions differs from the two previous one. It consists in using a
“mirror” (“virtual” or “ghost”) cell which is placed outside the domain and where a virtual state is evaluated
from given data and extrapolated values from the interior. The interface is then numerically treated as an interior
one (the numerical flux is defined is Section 2.3.2).
For the subsonic inflow, the virtual state is computed from the mass flow Q0, the temperature T0 and the
direction of the flow α0 and from the density extrapolated from the interior. For the subsonic outflow, a state
on the mirror cell is evaluated from the given pressure and from density and velocity components extrapolated
from the interior.
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Figure 4: S1 : Structured triangulation of
the channel
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Figure 5: S1 : TheL∞ norm of the velocity
residual

Figure 6: S1 : mach isolines for CH QT Figure 7: S1 : pressure isolines for CH QT

Figure 8: S1 : mach isolines for Rinv Figure 9: S1 : pressure isolines for Rinv

Figure 10: S1 : mach isolines for Mi QT
Figure 11: S1 : pressure isolines for
Mi QT

9.1.4 Numerical results forM0 = 0.5

The tests presented here concern a structured triangulation of the domain (see Figure 4) and an unstructured
triangulation (see Figure 12) obtained by the mesh software “EMC2” developed by Hecht and Saltel [30]. All
the computations are carried out with the Euler’s explicit time scheme with a Courant number of 0.9. We
compare the convergence to the steady solution obtained with

• the Riemann invariant boundary condition (Rinv),

• the partial Riemann invariant problem treatment of the boundary condition (PR QT),

• the mirror treatment (MI QT)

• the present boundary condition (CH QT) where at the subsonic inlet boundary the flow direction α = 0,
the flow mass Q = Q0 and the temperature T = T0 are prescribed. Since for a polytropic gas, it is
equivalent to prescribe the internal energy, we know from Proposition 6 that for these physical conditions,
hypothesis of Theorem 1 are available and we can apply formula (8.14). At the outlet boundary, pressure
p = p0 is prescribed following formula (8.9).

As can be seen in Figure 5 for the structured mesh and in Figure 13 for the unstructured mesh, the evolution
of L∞ norms of the velocity residual (ie relative error) are quite identical, that is the four methods converge to
the steady state in a similar way. Let us remark that numerical results for (PR QT) and (CH QT) are rigorously
identical (to within rounding errors) and confirm the conclusion of the Section 3.3. In addition, when one com-
pares steady solutions through the isoMach distributions (Figures 6, 8, 10, 14, 16, 18) or the isobars (Figures 7,
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9, 11, 15, 17, 19), one can see that the computed solutions are identical in spite of slight deformations. Finally,
one can observe that the present method is insensitive to the mesh structure.

Figure 12: S2 : Unstructured triangulation
of the channel
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Figure 13: S2 : The L∞ norm of the veloc-
ity residual

Figure 14: S2 : mach isolines for CH QT
Figure 15: S2 : pressure isolines for
CH QT

Figure 16: S2 : mach isolines for Rinv Figure 17: S2 : pressure isolines for Rinv

Figure 18: S2 : mach isolines for Mi QT
Figure 19: S2 : pressure isolines for
Mi QT

9.1.5 Behavior at low Mach numbers

It is well known that it is a difficult task to compute the solution of compressible equations for low Mach number.
The main difficulty comes from the large disparity of the wave speeds (acoustic waves and waves convected
at the fluid speed). Even if the incompressible equations approximate the compressible equations when the
Mach number becomes small, there are numerous reasons for developing some compressible codes to solve
nearly incompressible flow (see for instance Turkel et al [58]). Local preconditioning has been successfully
used to improve convergence rates and accuracy of numerical approximations for low speed flow : Tukel [56],
Turkel [57], Van Leer et al [59], Choi and Merkle [9], Lee [37] and references therein. The local preconditioning
modifies time-dependent equations by multiplying local vector of time derivatives by a locally-evaluated, non-
singular matrix. More precisely, the semi-discretization (2.64) is replaced by the following preconditioned
formulation :

vol(K)P−1 dvK
dt

+
∑

L∈N (K)

area(K ∩ L)Φ(vK , vL;K,L) = 0 . (9.10)
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Figure 20: S1 : The L∞ norm of the veloc-
ity residual

Figure 21: S1 : mach isolines for CH QT
Figure 22: S1 : pressure isolines for
CH QT
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Figure 23: S2 : The L∞ norm of the veloc-
ity residual

Figure 24: S2 : mach isolines for CH QT
Figure 25: S2 : pressure isolines for
CH QT

This matrix P depends on the local value vK and even if the scheme is no longer time consistent, the choice of
the Turkel’s diagonal preconditioner that reads (in (p, u, s) variables) :

P−1 =

( 1
β2 0

0 1nd+1

)
with β =





ε if (M) < ε
(M) if ε < (M) < 1
1 if (M) ≥ 1

(9.11)

improves the convergence and the accuracy of the steady-state discretization. Let us note that, following the
observations of Van Leer et al [59], the numerical fluxes defined in Section 2.3.2 is also modified by the
preconditioner The purpose of our computations here is not to analyze the effect of preconditioning on the
boundary conditions we have previously described (as it is done in Darmofal et al[12]) but our aim is to observe
how behave from a practical point of view the different treatments of boundary conditions when the upwind
method and the time-derivative are modified by the low Mach preconditioner. The treatment by the Riemann
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invariants (Rinv) and by the partial Riemann problem (PR QT) yield unstable schemes unable to converge to
the steady state unlike the mirror treatment (MI QT) and the present method (CH QT) as it can be observed
in Figure 20 and in Figure 23 where the evolution of velocity residual for the structured mesh and for the
unstructured mesh are shown. It was an expected result for the mirror treatment since the flux at the boundary
is computed like an interior interface flux once the “ghost cell” volume has been evaluated. In the same way,
the result for (Rinv) and (PR QT) can be at least formally explained since the invariants and the resolution of
the partial Riemann problem have not been adapted to the preconditioned equations. Figures 21 and 24 show
the Mach distribution and Figures 22 and 25 the pressure distribution for (M)0 = 0.01 and the accuracy of
numerical solutions is verified by comparisons with solutions for (M)0 = 0.5. The automatic adaptation to the
Turkel’s preconditioning of the present method for computing the boundary flux confirms its robustness.

9.2 Perfect gas dynamics : the “Anderson” subsonic nozzle
We consider in this example, the convergence to the steady, isentropic flow through a convergent-divergent
nozzle and with a perfect gas as described in Anderson [1]. The nozzle is specified with the following area
distribution :

A =

{
1 + 2.2(x− 1.5)2 for 0 ≤ x ≤ 1.5
1 + 0.2223(x− 1.5)2 for 1.5 ≤ x ≤ 3.0

The flow at the inlet comes from a reservoir where the internal energy (e0 = 1), the density (ρ0 = 1) and
the direction of the flow (α0 = (1, 0)) are given and where the velocity is considered equal to zero. Total or
stagnation temperature (T0), total or stagnation pressure (p0) and from an equivalent point of view enthalpy
(H0) and entropy (S0) are evaluated from the equation of state for a perfect gas with R = 2/5 and γ = 7/5
and they can be expressed as :





T0 =
p0

Rρ0

p0 = (γ − 1)ρ0e0

S0 =
p0

ργ0

H0 = e0 +
p0

ρ0

⇒





T0 =
γ − 1

R

p0 = γ − 1

S0 = 1

H0 = γ

The exit pressure pe is only slightly smaller than the reservoir pressure :

κ ≡ pe
p0

= 0.93.

In a such case, the Mach number increases with distance until the minimum area cross section (the maximum
reached by Mach number is less than 1) and decreases in the divergent section.

9.2.1 The partial Riemann problem treatment of boundary conditions : PR HS

Since the enthalpy, the entropy and the direction of the flow are given at the subsonic inlet, the unique state Vb
that can be connected to the interior through two simple-waves and which lies in the boundary manifold (see
Dubois [19]) satisfies the relations :





αb = α0

u2
b

2
+

γpb
(γ − 1)ρb

= H0

pb
ργb

= S0

(9.12)

This means that in the velocity module - pressure plane, we set :

u2
b

2
+

γ

γ − 1
p
γ−1
γ

b S
1
γ

0 = H0 (9.13)

The boundary state is then obtained by solving a partial Riemann problem which reduces to find the state
satisfying equation (9.13) and issued from an intermediate state µ1 through a 2-wave, this state being issued
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from the interior state through a 1-wave. If the 1-wave is a 1-rarefaction wave, we get :





u · ν +
2

γ − 1
c ≡ R+ = u1 · ν +

2

γ − 1
c1

p

ργ
≡ S =

p1

ργ1
u1 · ν = ub · ν
p1 = pb

(9.14)

From this system, the module of velocity can be made explicit as solution of a quadratic equation :
(

1
2

+ γ−1
4

(
S0
S

) 1
γ

(αb · ν)2

)
u2
b −R+ γ−1

2

(
S0
S

) 1
γ

(αb · ν)ub+

γ−1
4

(
S0
S

) 1
γ
R+2

= H0

(9.15)

In case of a 1-shock wave, the partial Riemann problem yields :




u1 · ν − u · ν +

√
2

ρ((γ + 1)p1 + (γ − 1)p)
(p1 − p) = 0

u1 · ν = ub · ν
p1 = pb

(9.16)

Then we obtain that the pressure follows :

2(H0 − γ

γ − 1
p
γ−1
γ

b S
1
γ

0 ) =
(
u · ν −

√
2

ρ((γ+1)pb+(γ−1)p)
(pb − p)

)2 (9.17)

For the outlet subsonic condition, the unique state associated to the prescribed pressure pe and that can be
connected to the interior state by a 1-wave is exactly solved thanks to the relations (1-rarefaction wave) :





pb = κp0

pb
ργb

=
p

ργ

ub · ν +
2

γ − 1
cb = u · ν +

2

γ − 1
c

ub · τ = u · τ

or (1-shock wave) : 



pb = κp0

pb
ργb

=
p

ργ

ub · ν = u · ν −
√

2

ρ((γ + 1)pb + (γ − 1)p)
(pb − p)

ub · τ = u · τ

9.2.2 The mirror treatment : Mi HS

This set of boundary conditions consists in the specification of the total pressure, total temperature and the
direction of the flow for the inlet case. A virtual state is computed in a “mirror” cell from these values and from
Mach number extrapolated from the interior. The outlet treatment is similar to the sinus bump benchmark

9.2.3 Numerical results

Figure 26 show the unstructured triangulation used for the present tests. All the computations are carried out
with the Euler’s explicit time scheme with a Courant number of 0.9. We compare the convergence to the steady
solution obtained with

• the partial Riemann invariant problem treatment of the boundary condition (PR HS),

• the mirror treatment (MI HS)
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Figure 26: Unstructured triangulation of
the nozzle
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Figure 27: The L∞ norm of the velocity
residual

Figure 28: Mach isolines for CH PT Figure 29: Mach isolines for Mi PT

• the present boundary condition (CH HS) where at the subsonic inlet boundary the flow direction α = 0,
the total enthalpy H = H0 and the entropy S = S0 are prescribed. In Proposition 7, it is proved
that for these physical boundary conditions, hypothesis of Theorem 1 are available and we can apply
formula (8.14). At the outlet boundary, pressure p = κp0 is prescribed following formula (8.9).

Figure 27 show the evolution of L∞ norms of the velocity residual (ie relative error) for the three methods : one
can see that they converge to the steady state in a similar way. Let us remark that numerical results for (PR HS)
and (CH HT) are rigorously identical (to within rounding errors) and confirm the conclusion of the Section 3.3.
In addition, when one compares steady solutions through the isoMach distributions (Figures 28, 29) one can
see that the computed solutions are identical in spite of slight deformations near the smallest cross section.

10 The one dimensional case for the Euler equations
In the one dimensional case, equation (2.1) reads

∂v

∂t
+
∂f(v)

∂x
= 0 , (10.1)

where f maps G ⊂ Rm into Rm. We denote here by A(v) the jacobian matrix ∂f(v)
∂v

. We assume that (10.1) is
hyperbolic (see Definition 1) and introduce an eigensystem of A(v) composed of

• the set of the real eigenvalues : λ1(v) ≤ . . . ≤ λm(v),
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• a set (l1(v), . . . , lm(v)) of left eigenvectors satisfying :

tA(v) lk(v) = λk(v)lk(v), for k = 1, . . . ,m,

• a set (r1(v), . . . , rm(v)) of right eigenvectors satisfying :

A(v) rk(v) = λk(v)rk(v), for k = 1, . . . ,m.

and the following normalization : (k, p = 1, . . . ,m)

lk(v) · rp(v) = δk,p .

From the computational point of view, the major change between the multidimensional case and the one dimen-
sional one comes from the fact that the geometrical structure in the latter is trivial.

We are only going to discuss the Euler equations for inviscid fluids. We have nd = 1 (u ∈ R) and m = 3. The
unknown is :

v = (ρ, ρu, ρE) (10.2)

and the flux is defined by :
f(v) = (ρu, ρu2 + p, ρuH) . (10.3)

Writing this equation in a quasilinear form, we have

∂v

∂t
+A(v)

∂v

∂x
= 0 , (10.4)

where the matrix A is simply :

A(v) =




0 1 0

K − u2 (2− k)u k

u(K −H) H − ku2 (1 + k)u



. (10.5)

The eigenvalues of A(v) are

λ1(v) = u− c, λ2 = u, λ3 = u+ c, (10.6)

and we can take as associated eigenvectors :

r1(v) = (1, u− c,H − uc), (10.7)

r2(v) = (1, u,H − c2/k), (10.8)

r3(v) = (1, u+ c,H + uc). (10.9)

The dual basis of the (rk(v)) is then :

l1(v) =
1

2c2
(K + uc,−ku− c, k), (10.10)

l2(v) =
k

c2
(H − u2, u,−1), (10.11)

l3(v) =
1

2c2
(K − uc,−ku+ c, k). (10.12)

10.1 The case of a subsonic inlet boundary condition
We assume that the problem is posed on the interval ]0, L[ and that the inlet boundary is held at x = L in
order to x in equation (10.4) coincides with the coordinate along the outer normal. We have −c < u < 0 and
therefore with the notations of Section 3.1.3, χ = 2 since there are two negative eigenvalues : u − c and u.
Hence we have to prescribe two boundary conditions that we write

g1(v) = 0 , g2(v) = 0 . (10.13)

In this case we can write the two differential forms dg1 and dg2 as

dgq =
m∑

k=1

(rk(v) · dgk)lk(v) , q = 1, 2 , (10.14)
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so that the condition (3.15) reads in the dual basis (l1(v), l2(v), l3(v)) :

det(dg1(v), dg2(v), l3(v)) 6= 0 . (10.15)

Finally, we can formulate the following proposition :

Proposition 3 The physical boundary conditions g1(v) = 0 and g2(v) = 0 can be prescribed at a subsonic
inlet if the condition

l3(v) · (dg1(v) ∧ dg2(v)) 6= 0 , (10.16)

is satisfied.

Remark 19 Since l3(v) = 1
2c2

(K − uc,−ku+ c, k), condition (10.16) is straightforward to check.

Let us study a few pairs (g1, g2). In general, function gk concerns a physical variable belonging for instance to
{p, ρ, T, h, e, u, ρu}.
Remark 20 According to the equation of state, giving two independent thermodynamic variables give all the
others.

Hence there are essentially two cases :

• i) g1 and g2 consist in prescribing two thermodynamic variables,

• g1 prescribes a thermodynamic variable and g2 imposes a function of velocity (combination of velocity and
a thermodynamic variable). For instance :

ii1) g2 imposes the velocity : g2(v) = u− uin,

ii2) g2 imposes the mass flow : g2(v) = v2 − (ρu)in,

ii3) g2 imposes the total enthalpy (H = h+ 1
2
u2) : g2(v) = H −Hin.

10.1.1 Prescribing two thermodynamic variables at subsonic inlet

Let us first consider the case where two thermodynamic variables are imposed. According to the remark 20, we
can consider that ρ, the density, and e, the internal energy, are given. Using the relations (6.10) and (6.11), we
obtain :

dρ = dv1 , (10.17)

de = −e−
1
2
u2

ρ
dv1 − u

ρ
dv2 +

1

ρ
dv3 , (10.18)

so that

dρ ∧ de =
1

ρ
(0,−1,−u) . (10.19)

Hence it follows that condition (10.16) reads :

l3 · (dρ ∧ de) =
−1

2ρc
6= 0 , (10.20)

and we have shown the following result.

Proposition 4 In the case of a subsonic inlet, all pair of independent thermodynamic variables is suitable.

10.1.2 Prescribing a thermodynamic variable and velocity at subsonic inlet

Let us now turn ourselves towards the case the velocity is given : g2(v) = u− uin. If we use the fact that
u = v2

v1
then we have

du = −u
ρ
dv1 +

1

ρ
dv2 . (10.21)

Condition (10.16) reads then

dg1(v) · (1, u,H − c2

k
) 6= 0 , (10.22)

or (see definition (10.8) of r2(v))
r2(v) · dg1(v) 6= 0 . (10.23)

In the following part we restrict the study to three types of function g1 :
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• We assume that the pressure is given, i.e. g1(v) = p − pin. Since thermodynamic relations (6.16) and
(6.17) imply that

dp = (c2 − kp

ρ
)dρ+ kρde , (10.24)

or similarly

dp = k

{
(u2 +

c2

k
−H)dv1 − udv2 + dv3

}
, (10.25)

it is easy to see that g1(v) = p− pin does not satisfy (10.22).

• We assume that the internal energy is given, i.e. g1(v) = e− ein. Therefore from (10.18)

de = −(e− 1

2
u2)dv1 − udv2 + dv3 , (10.26)

and condition (10.22) implies that
p

ρ
− c2

k
6= 0 . (10.27)

For a perfect gas with constant specific heat coefficients, since e = CvT , prescribing the internal energy
is equivalent to prescribing temperature. Now let us remark that a polytropic gas for which p = (γ−1)ρe

and k = γ − 1, satisfies the condition (10.27) since − c2

γ(γ−1)
6= 0.

• If the specific enthalpy is given, i.e. g1(v) = h− hin, since (h = e+ p
ρ

)

dh =
1

ρ

{
(c2 − (k + 1)H + (k + 1)u2)dv1 − (k + 1)udv2 + (k + 1)dv3

}
, (10.28)

condition (10.22) reads c2 6= 0 which is obviously satisfied.

Proposition 5 In the case of a subsonic inlet, if we prescribe u, we can prescribe another condition g1(v) = 0
if and only if (10.22) is satisfied. A condition which does not allow to impose the pressure but allow to impose
the internal energy or the specific enthalpy.

10.1.3 Prescribing a thermodynamic variable and mass flow at subsonic inlet

We study the case where one prescribes the mass flow and another condition. This case is also relevant from
the physical point of view. Here we have g2(v) = v2 − (ρu)in so that dg2 = dv2 and condition (10.16) reads

dg1(v) · (k, 0, uc−K) 6= 0 . (10.29)

If we take

• g1(v) = p− pin, then it leads to the condition uc 6= 0 which is always satisfied since at an inlet we take
(ρu)in < 0,

• g1(v) = e − ein, then condition (10.22) implies that uc − c2 +
kp

ρ
6= 0. A polytropic gas for which

p = (γ − 1)ρe and k = γ − 1, satisfies this condition since u− c
γ
< 0.

Proposition 6 In the case of a subsonic inlet, if we prescribe the mass flow ρu, we can prescribe another
condition g1(v) = 0 if and only if (10.29) is satisfied. This condition allows to impose for instance the pressure.

10.1.4 Prescribing a thermodynamic variable and total enthalpy at subsonic inlet

We assume here that total enthalpy is prescribed i.e. g2(v) = H−Hin. Since by definition H = e+ p
ρ

+ 1
2
u2,

we have :

dH =
ku2 + c2 − (k + 1)H

ρ
dv1 − ku

ρ
dv2 +

k + 1

ρ
dv3 . (10.30)

Then condition (10.16) reads in this case :

dg1(v) ·
(
k(u− c)− c, (c− ku)(c− u), kH(u− c) + c(c2 −H)

)
6= 0 . (10.31)

If for instance we impose entropy i.e. if we take g1(v) = s− sin, then since

ds =
1

ρT

(
(u2 −H)dv1 − udv2 + dv3

)
(10.32)

condition (10.31) reads c− u 6= 0. A condition obviously satisfied.

Proposition 7 In the case of a subsonic inlet, if we prescribe the total enthalpy H , we can prescribe another
condition g1(v) = 0 if and only if (10.31) is satisfied. This condition allows to impose the entropy.

55



On boundary conditions in the FV framework Report CMLA, Ens de Cachan, 2003

10.1.5 The ”incomplete” Riemann problem method

The method consists in finding µ, an intermediate state, such that

(a) v is connected to µ through a 1-simple wave and

(b) µ is connected to v through a 2-simple wave.

For p = 1 or 2, let us denote by W p
k , k = 1 or 2, two independent p-pseudo Riemann invariants. It can be

shown6 that (a) is equivalent to

W 1
1 (v) = W 1

1 (µ) , W 1
2 (v) = W 1

2 (µ) , (10.33)

while (b) is equivalent to
W 2

1 (µ) = W 2
1 (v) , W 2

2 (µ) = W 2
2 (v) . (10.34)

In this method we have two vectors v and µ which are unknown, that is 6 scalar unknowns, and 6 scalar equa-
tions : (10.13)-(10.33)-(10.34). This must be compared with our method which involves only 3 scalar unknowns
and equations, and moreover which does not impose to find and compute pseudo Riemann invariants.

We are going to compare the two approaches in more details and for that purpose, we begin by discussing the
construction of pseudo Riemann invariants for the one dimensional Euler equations. For these equations there
are at least two set of dependent variables which simplify the convection matrix A(v). The first one are the
variables (ρ, u, s) and the second one are (ρ, u, p). In the first variables, the right eigenvectors can be taken as :

variables (ρ, u, s)

r̃1(v) = (ρ,−c, 0), (10.35)

r̃2(v) =

((
∂p

∂s

)

ρ

, 0,−
(
∂p

∂ρ

)

s

)
, (10.36)

r̃3(v) = (ρ, c, 0). (10.37)

While in the second set of variables, they can be taken as :

variables (ρ, u, p)

r̃1(v) = (1,− c
ρ
, c2), (10.38)

r̃2(v) = (1, 0, 0), (10.39)

r̃3(v) = (1,
c

ρ
, c2). (10.40)

• Computation of 1-Riemann invariants. In view of the 3 different 1-right eigenvectors (10.7), (10.35) and
(10.38), it is more convenient to work with the variables (ρ, u, s) since (3.31) simply reads :

ρ
∂W

∂ρ
− c∂W

∂u
= 0 . (10.41)

The third variable, namely s is clearly a 1-pseudo Riemann invariant7. According to the theory, we have
another 1-pseudo Riemann invariant which is is functionally independent of s. If we look for a solution
of the form W = u+ f(ρ, s), we automatically obtain that

W 1 = u+

∫ ρ

ρ0

c(r, s)

r
dr , (10.42)

is a 1-Riemann Invariant.

• Computation of 2-Riemann invariants. In view of the 3 different 2-right eigenvectors (10.8), (10.36) and
(10.39), it is more convenient to work with the variables (ρ, u, p) since (3.31) simply reads :

∂W

∂ρ
= 0 . (10.43)

Here two independent 2-pseudo Riemann invariants are obviously u and p.

6In the regular case in the sense of Lax, see e.g. Smoller [51].
7In this case it is also a Riemann invariant.
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• Computation of 3-Riemann invariants. In view of the 3 different 3-right eigenvectors (10.9), (10.37) and
(10.40), it is more convenient to work with the variables (ρ, u, s) since (3.31) simply reads :

∂W

∂ρ
+ c

∂W

∂u
= 0 . (10.44)

Again the third variable, namely s, is clearly a 3-pseudo Riemann invariant and like for the 1-pseudo
Riemann invariant case, we obtain that

W 3 = u−
∫ ρ

ρ0

c(r, s)

r
dr , (10.45)

is a 3-Riemann Invariant.

Remark 21 In the case of a perfect polytropic gas (p = (γ− 1)ρe) the 1-Riemann invariant (10.42) simplifies
to W 1 = u+ 2

γ−1
c while the 3-Riemann invariant (10.45) simplifies to W 1 = u− 2

γ−1
c.

We sum up these computations in Table 1.

k = 1 k = 2 k = 3
λk u− c u u+ c

k-pseudo Riemann invariants
s, u+

∫ ρ
ρ0

c(r,s)
r dr u, p s, u−

∫ ρ
ρ0

c(r,s)
r dr

k-pseudo Riemann invariants
perfect polytropic gas s, u+ 2

γ−1c u, p s, u− 2
γ−1c

Table 1: k-pseudo Riemann invariant for one dimensional Euler equations

Let us now return to the use of the ”incomplete” Riemann problem for the determination of the boundary state
v. The internal state v is given and we have to find the two states v and µ satisfying the 6 scalar equations
(10.13)-(10.33)-(10.34). Since we have explicit values for the pseudo Riemann invariants, we can rewrite the
two last equations as :

s = s1 u− u1 =

∫ ρ1

ρ

c(r, s)

r
dr (10.46)

u1 = u, p1 = p , (10.47)

where the state v corresponds to (ρ, u, p), the state µ to (ρ1, u1, p1) and v corresponds to (ρ, u, p). These 4
nonlinear equations must be coupled with the given boundary conditions (10.13). This method appears to be
much more complex than the one we propose, since we only have to add to (10.13) one equation which is here
l3(v) · f(v) = l3(v) · f(v) or explicitly :

(K − uc)ρu+ (c− ku)(ρu2 + p) + kρuH = pc+ c2ρu− kup . (10.48)

On the other hand we have compared numerically the solutions on test cases and it appears that they give almost
the same solution, see Section 9.

10.1.6 Conclusion

For a subsonic inlet boundary condition, even in the simplest cases of one dimensional Euler equation, the
method of this paper leads to a simpler and faster algorithm for imposing the physical boundary conditions.

10.2 The case of a subsonic outlet boundary condition
We assume again that the problem is posed on the interval ]0, L[ and now the outlet boundary is held at x = L
in order that x in equation (10.4) coincides with the coordinate along the outer normal. We have 0 < u < c
and therefore with the notations of Section 3.1.3, χ = 1 since there is one negative eigenvalue : u − c. Hence
we have to prescribe one boundary condition that we write

g1(v) = 0 . (10.49)

Condition (3.15) reads here

∂g1

∂v1
(v) + (u− c)∂g1

∂v2
(v) + (H − uc)∂g1

∂v3
(v) 6= 0 .
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Proposition 8 The physical boundary conditions g1(v) = 0 can be prescribed at a subsonic outlet if the
condition

∂g1

∂v1
(v) + (u− c)∂g1

∂v2
(v) + (H − uc)∂g1

∂v3
(v) 6= 0 , (10.50)

is satisfied.

Usually at a subsonic outlet it is standard to impose the pressure, that is to take g(v) = p−pOUT where pOUT is
a given pressure. According to Section 6.2.1 with nd = 1, we find that the left hand side of (10.50) is c2, a pos-
itive number. One can also wish to impose another quantity like velocity, mass flux, temperature,. . . Denoting
by ∆ the right hand side of (10.50), we obtain after some tedious computations the following results gathered
in Table 2. These show that indeed it is possible to impose either the pressure or the velocity or else the tem-
perature. It is not possible to prescribe the entropy (s) but it is also possible to impose the mass flux (ρu) or
the total enthalpy (H). However in these last cases, an instability may occur if the flow becomes critical (sonic
point) at the outlet.

Variable g1(v) ∆

Pressure p− pOUT c2

Velocity u− uOUT − c
ρ

Mass flux ρu− (ρu)OUT u− c
Temperature (perfect gas) T − TOUT 2c2+3γu2

6γCvρ

Total Enthalpy H −HOUT
c(c−u)
ρ

Entropy s− sOUT 0

Table 2: Values of ∆, the left hand side of (10.50)

10.3 The case of a wall boundary condition
We have already treated this case in the general case (Section 6.1). We assume that the wall is located at x = L.
Recall that since u = 0 on the wall, the flux we are looking for simply reads as f(v) = (0, p, 0) and therefore
is totally determined by p. The characteristic analysis leads here to the equation :

l3(v) · f(v) = l3(v) · f(v) , (10.51)

hence we obtain :

p =
l3(v) · f(v)

l3(v) · (0, 1, 0)
, (10.52)

that is (compare with (6.4)) :

p = p+
ρc2u

c− ku . (10.53)

Remark 22 For a polytropic gas, for which the equation of state is p = (γ − 1)ρe where γ > 1 is a given
constant, we have k = γ − 1 and c2 = γp

ρ
. Then formula (10.53) reads as

p = p

(
1 +

γu

c− (γ − 1)u

)
= p

(
1 +

γM
1− (γ − 1)M

)
. (10.54)

10.4 How to handle change of type
Let us discuss a typical case which arises in practice. Assume that we aim to capture a stationary state such
that the right boundary x = L corresponds to a subsonic outlet. The physical boundary condition in this case
might be e.g. a prescribed pressure pOUT as already discussed in Section 10.2. This situation assumes that at
the boundary the fluid is indeed going outside of the domain and more precisely that 0 < u < c. But since
this stationary flow is computed by using the evolution equation, nothing guaranties that during the transient
the fluid might temporarily enters into the domain i.e. that the velocity at the boundary (and/or at the cell
adjacent to the boundary) might become negative u < 0 < c. In such a case the outlet becomes an inlet and
according to the theory one must prescribe two physical boundary conditions. We have already one physical
boundary condition, namely an imposed pressure, it is therefore natural to add another one to this condition.
According to Section 10.1, we have various choices. The more natural one is to impose another thermodynamic
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variable (Proposition 4). All the choices are equivalent in theory since once the pressure is given, any of the
other thermodynamic variables (density, pressure, energy, enthalpy and entropy) will determine uniquely the
thermodynamical state. Let us for instance assume that we decide to impose the density (it is the more natural
choice since it is one of our computational variable v1) ρ = ρOUT .
The structure of the algorithm is then as follows.

• If 0 < u < c then the flux f(v) = (ρu, ρu2 + p, ρuH) is determined by solving the system :

p = pOUT ,

l2(v) · f(v) = l2(v) · f(v) , (10.55)

l3(v) · f(v) = l3(v) · f(v) .

• If u = 0 then f(v) = (0, pOUT , 0).

• If −c < u < 0 then the flux f(v) = (ρu, ρu2 + p, ρuH) is determined by solving the system :

p = pOUT ,

ρ = ρOUT (10.56)

l3(v) · f(v) = l3(v) · f(v) .

Remark 23 We have not discussed yet the choice of ρOUT . Here again there are two possibilities. In the first
one, ρOUT is prescribed because one has some insight on the value of ρ at the outlet for the stationary state
under investigation. While in the second one, we simply take ρOUT = ρ. This corresponds in a certain sense
to the discretization of a Neumann’s condition on ρ. In general this last condition is preferred since it does not
produce an artificial boundary layer on ρ.

11 Conclusions
In this paper we have presented a method for imposing boundary conditions for multidimensional hyperbolic
systems of conservation laws. This method is general and very simple to write down and to implement. It
does not rely on extra constructions like e.g. Riemann solvers or (pseudo) Riemann invariants. Moreover we
have shown both via a mathematical proof and numerical evidence that it gives as good results as the more
sophisticated method of partial Riemann problems, with the advantage that, besides being general, it is more
efficient from the computational point of view.

12 Appendix : Construction of control volumes
To define the finite volume method, the computational domain Ω, taken to be a polygonal domain, has to be
decomposed in small volumes K such that Ω = ∪K∈TK. These small volumes K are polyhedra such that
the boundary is the union of hypersurfaces K ∩ L where L belongs to the set N (K) = {L ∈ T /L 6=
K and K ∩ L has positive (nd− 1)-measure} and of hypersurfaces on the boundary of Ω i.e. K ∩ ∂Ω.
Here we assume that an unstructured mesh in the finite element sense composed of triangles in 2 dimensional
space (for instance Figure 30) and of tetrahedra in 3 dimensional space is defined on the domain Ω. For defining
control volumes on this given mesh, there are different choices.

12.1 The cell center finite volume approach
This method consists in approximating the average of the solution on the simplex itself (triangles in 2-D,
tetrahedra in 3-D).

12.2 The vertex finite volume approach
The vertex finite volume approach, also called node-centered finite volume is very popular in the commu-
nity of fluid dynamics (see Dervieux [14], Selmin [49], Stoufflet [48], Arminjon and Madrane [3], Carré and
Dervieux [8], Debiez et al [13], Dervieux and Desideri [15], Eymard et al [21], Farhat and Lanteri [22], Feis-
tauer et al [24],...). This method consists in approximating the average on the so-called dual mesh where the
control volumes D are associated with vertices of the initial finite element mesh. For nd = 2, the volume D
associated with vertex S is obtained by joining the center of gravity of elementsK that contain the vertex S and
the center of all faces of K sharing S. For vertices on the boundary, the volume is complete with the boundary

59



On boundary conditions in the FV framework Report CMLA, Ens de Cachan, 2003

of the domain : see Figure 31. This dual mesh is also called “Voronoı̈” dual mesh. For nd = 3, the volume D
associated with vertex S is the union of the subpolyhedrons resulting from the subdivision of polyhedrons K
containing S by means of medians planes.

Figure 30: Cell F.V. : the control volumes
are the simplex of the finite element mesh

Figure 31: Vertex F.V. : Control volumes
on a 2d triangular (dashed) mesh

Remark 24 For nd = 2, if a linear approximation is used and if mass lumping or low order quadrature
formulas are employed, one can prove that the scheme defined in Section 2.3.1 by the system of o.d.e.’s 2.64 and
the flux 2.66 is equivalent to a conforming finite element method with an upwind treatment of the convective
term (see for instance Idelsohn and Onate [33], Feistauer et al [24])... ). An other advantage of this choice,
concerns the discretization of second-order operator like viscous terms.

Remark 25 This method suffers from the building of the dual mesh. For instance, computations of the measure
of volumes and the area of hypersurface are not an easy task in three dimensions. It may also involve much
more numerical viscosity [41].

Remark 26 There is for nd = 2 and for a triangulation T made of triangles a slightly different method where
control volumes (Figure 32) are obtained by joining the center of gravity of every triangles K surrounding the
vertex S.

Figure 32: Modified vertex F.V. : Control
volumes on a 2d triangular (dashed) mesh

Figure 33: Barycentric F.V. : Control vol-
umes on a 2d triangular (dashed) mesh

12.3 The barycentric finite volume approach
More recently, Dolejsi and Angot [16], Feistauer et al [23], Angot et al [2] and Dolejsi et al [17] have developed
and used the barycentric finite volume where the average of solution is computed on control volumes that are
defined by joining the barycenter of each volume of the primal mesh with its vertices : each control volume is
then associated with a nd− 1 dimensional hypersurface of the initial mesh as it is illustrated on Figure 33.
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